

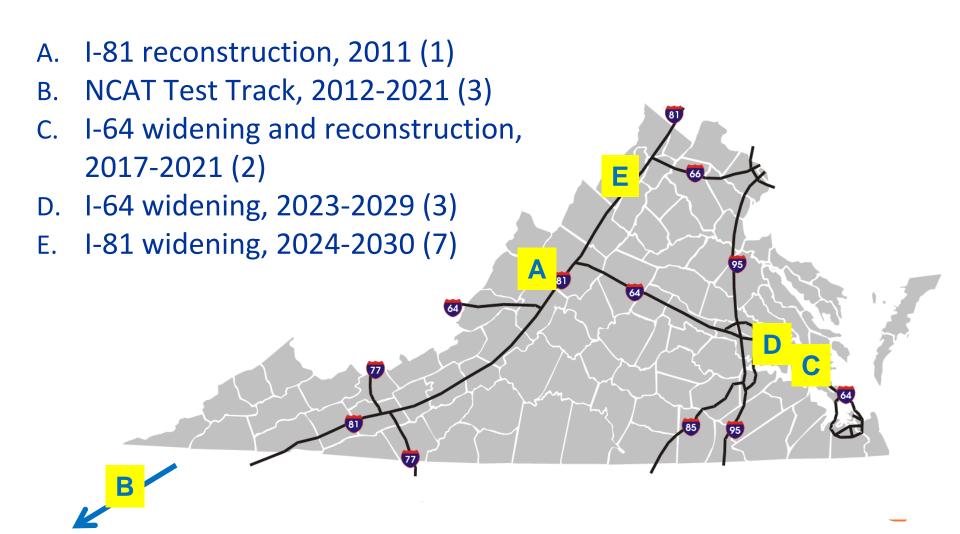
Pavement Recycling in the US: Recent Findings and Future Solutions

Brian Diefenderfer, PhD, PE Principal Research Scientist

2nd International Workshop on Asphalt Recycling Technologies September 8, 2025

Background

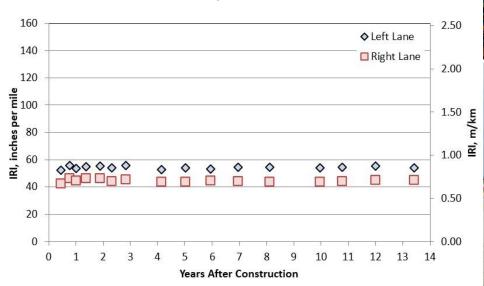
VTRC


- Research division for the Virginia Department of Transportation
- 165 km SW of Washington DC
- Conducts applied research with internal staff and external partners
- \$29M FY 2024 budget

Overview

- Virginia perspective
- Higher volume applications
- Lower volume / high production applications
- Future work
- Summary

I-81 Reconstruction


- 2011
 - 6.0 km x 2 lanes
 - FDR+CCPR right lane
 - CIR left lane
- Traffic
 - 25,000 AADT
 - 32% trucks
 - 8,000 per day
 - 3 million ESALs per year

100mm AC 150mm AC **200mm 150mm CCPR** 300mm FDR

Subgrade

I-81 Reconstruction

- Performance
 - Rut depth < 2mm</p>

N4 S12

100mm AC

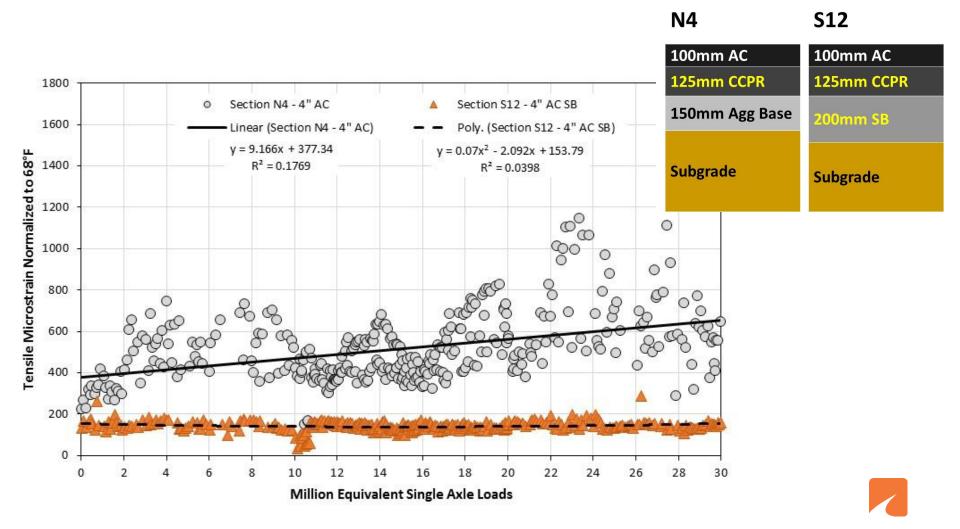
Strain gauges

125mm CCPR

150mm Agg Base

Subgrade

100mm AC


125mm CCPR

200mm SB

Subgrade

Strain gauges

Recycled Structures

- Recycled content
 - Layer 1 = 12.5% RAP
 - Layer 2 = 30% RAP
 - Layer 3 = 97% RAP
 - Layer 4 = 96% existing material
- Entire cross section
 - 76% recycled

S12

100mm AC

125mm CCPR

200mm SB

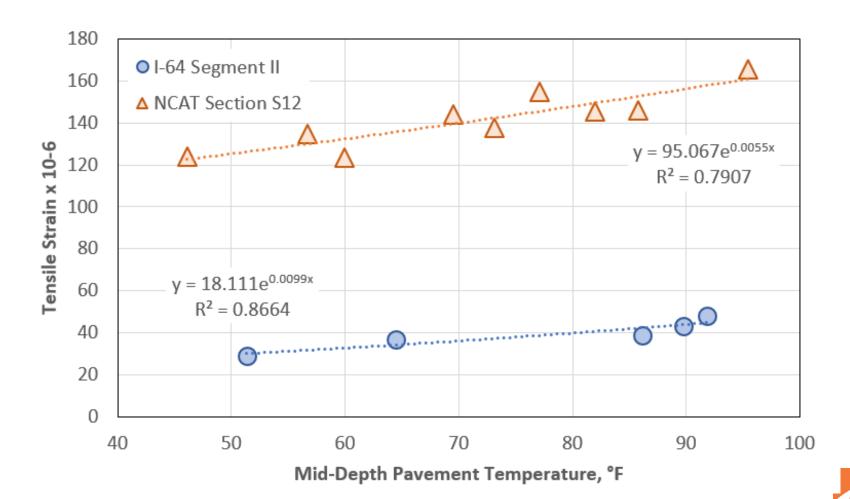
Subgrade

I-64 Widening / Reconstruction Project

- Segment 2, 2017-2019
 - 11.4 km, EB & WB
 - 36,000 AADT, 8% trucks
- Segment 3, 2018-2021
 - 13.4 km, EB & WB
 - 37,000 AADT, 5% trucks

I-64 Construction Sequence

- 1) New left lane and left shoulder
 - Imported FDR
 - RCA or RAP
 - CCPR from existing RAP stockpiles
 - New SMA surface layers
- 2) Shift traffic and reconstruct existing travel lanes and right shoulder
 - FDR existing foundation
 - CCPR from existing RAP stockpiles
 - New SMA surface layers


CCPR

85% RAP, 15% screenings

Mix design =2% foamed asphalt and 1% cement

100% passing 12.5mm

I-81

4-in AC 6-in AC

8-in CCPR

6-in CCPR

12-ih FDR

Subgrade

S12

4-inch AC

5-inch CCPR

8-inch FDR

Subgrade

I-64 Segment II

4-inch AC

6-inch CCPR

2-inch OGDL

12-inch FDR

Subgrade

I-64 Widening / Reconstruction Benefits

- Saved \$15 million
- Used more than 360,000 tons of RAP
 - 1 million tons of material recycled
- Reduced total primary energy demand by <u>25-45%</u>
- Reduced global warming potential (CO_{2-eq}) by <u>15-40%</u>

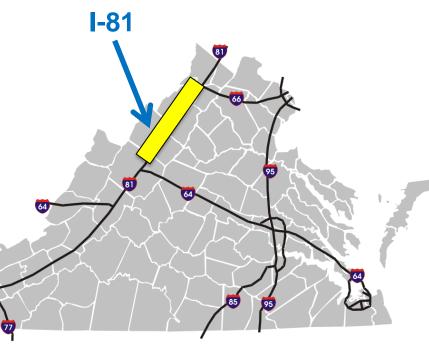
Recent Lane Widening

- I-64 (2023-2029)
 - 3 contiguous segments
 - $-45 \, \mathrm{km}$
 - 29,000-40,000 AADT (directional)
 - 7-10% trucks

- I-81 (2024-2030)
 - 7 separate projects
 - -47 km
 - 24,000-36,000 AADT (directional)
 - 23-27% trucks

I-64 Imported FDR RCA

I-81 Imported FDR Screenings



Projected Savings I-81 Widening

Design Alternative	Cost Difference, %
Original	+18.9%
FDR	0.0%
FDR+CCPR	-9.6%
CRCP	+28.3%

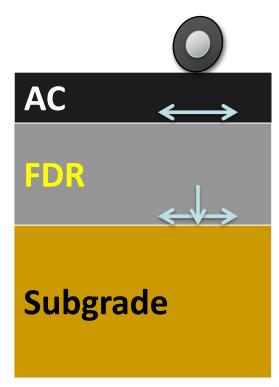
 Projected savings for all segments

> \$25M

Paver-Laid FDR

- Used so far on lower volume routes
 - Cold recycler
 - 1.7-2 km per day
 - Easier process to handle bulking

- Potential benefits
 - Single pass per lane
 - Better lateral blending?
 - Productivity?
- Hurdles
 - Equipment width
 - Paver throughput



Future Work

- Continued long-term performance monitoring
- Re-recycling
- Surfacing thickness design
 - Fatigue performance of FDR
 - Shear properties of CR
- LCA of recycling techniques

Summary

- Recycling successful on higher volume routes
- Optimize surfacing layer thickness
- Continued international cooperation

Thank you!

brian.diefenderfer@vdot.virginia.gov