

Balanced Performance Validation of the RA Cracking-Based Brittleness Index (CBI) for Recycled Asphalt Mixtures

Tine Tanghe, Alexandros Margaritis, João Crucho, Stefan Vansteenkiste, Nathalie Piérard and Ann Vanelstraete

8/9/2025

Content

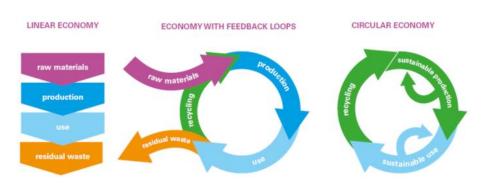
Background – Goal

Times Cracking-Based Brittleness Index-CBI approach

Level 1: RA screening/assessment

Level 2: Mixture level performance assessment

Concluding points



Why Reclaimed asphalt (RA)?

Enhance recyclability

- Increase (re)use of reclaimed asphalt (RA) (also in surface layers)
- Retain/increase durability while enhancing circularity
- Environmentally friendly bituminous mixtures and testing techniques.

Source: Rli, Circular Economy: From Wish to Practice

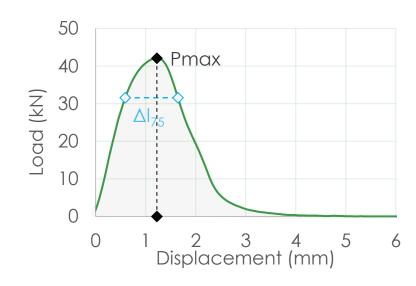
Background - Goal

- (More) RA in surface layers
- All RA materials suitable?
- Durability concerns when include (high content) RA in surface layers?
- □ Need for a framework to detect risky RA materials & risky mixtures with

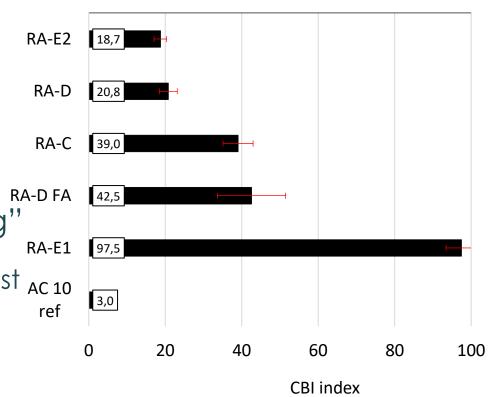
RA

- Goal: Durable high RA containing surface layer mixtures
 - Level 1 (RA level): RA characterization (CBI)
 - Level 2 (Mix level): Balanced-Mix Design (BMD) approach

Cracking-Based Brittleness Index-CBI


- RA ageing state (current practice):
 - \square Based on **extracted RA binder properties** (pen or $T_{R\&B}$)

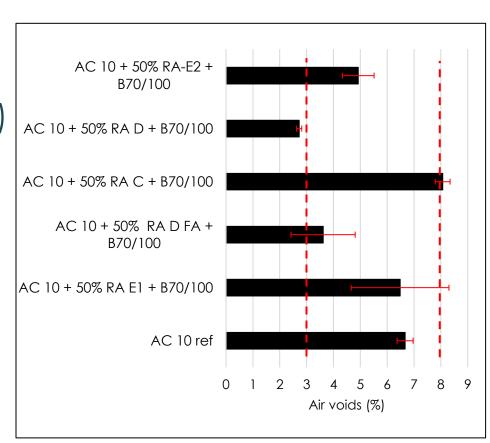
- **test**" □ captures bulk (RA) response
- Indirect tensile test (IDT) principle
- Specimens made of 100% RA
 - 7% air voids target
- Higher CBI values indicate more brittle mixture


Level 1: RA characterization CBI results

- Several RA materials tested
 - pen ranging from 7 to 20 dmm
 - RA "further aged" (denoted FA)
- Generally ranking reflects well "binder ageing"
 - RA E1 and RA D FA: very aged binders show highest AC 10 ref
 - RA D and E2: less aged, highest pen, lowest CBI
 - AC 10 ref (unaged) the lowest

Level 2: Mix level The BMD approach

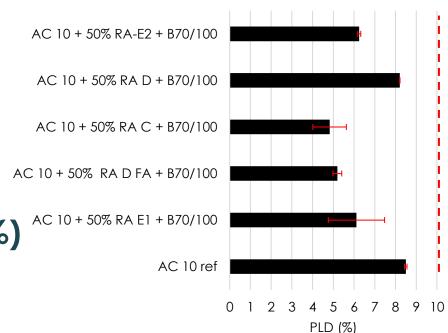
- 5 RA materials tested in AC-10 surf
 - 50% RA-binder replacement
- BMD approach
 - Compactability assessment: voids gyrator 60 G EN 12697-31
 - Performance assessment (ITT):
 - Wheel tracking @ 50°C EN 12697-22
 - Water sensitivity: EN126987-12 + 23
 - Raveling: CEN- TS 12697- 50
 - Strength assessment: ITS-test @ 25°C EN 12697-23
 - Cracking assessment: SCB test @ 15°C EN 12697-44



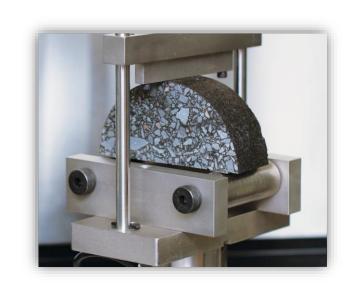
- Results voids @ 60G
- AC 10 surf: 3–8% void (Flemish requirement)

=> Different RA's (can/may) introduce risk

- 3 mixtures with 50% RA meet requirement
- 2 risky mixtures:
 - Mix with 50% RA D exhibited over-compaction,
 - Mix with 50% RA C (marginally) exceeded the upper limit.

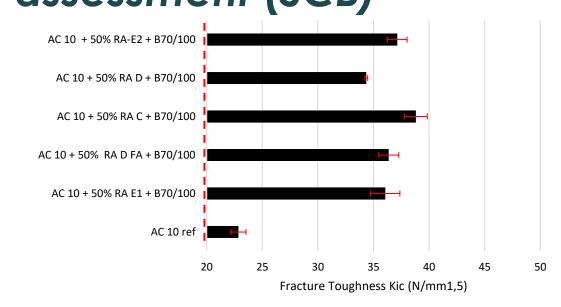


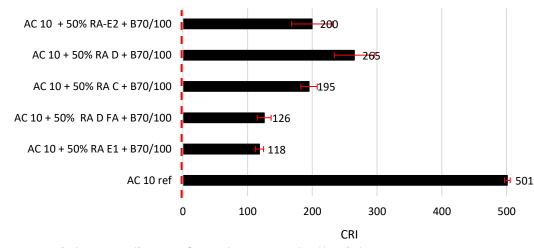
- Results: %PLD @ 50 °C 30000 cycles
- AC 10 surf: < 10% rut depth (Flemish requirement)
- Rutting resistance: no risks for all mixes (< 10%)</p>
 - AC surf + RA : Better than ref mix (stiffer)
 - Result influenced by void content for the extremes



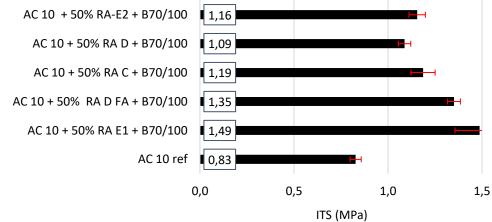
Level 2: Mix level Cracking resistance – strength assessment (SCB)

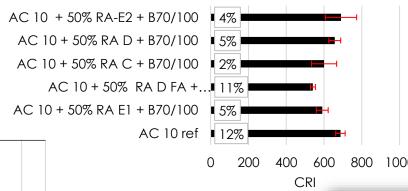
- Semi-Circular Bending (SCB) approach
- SCB samples: H=75mm W=150mm 7% air voids
- Test parameters: EN12697-44
 - 10 mm notch
 - 15°C
 - 5 mm/min
- Test result analysis approach:
 - Fracture toughness K_{IC}
 - Cracking Resistance Index (CRI)

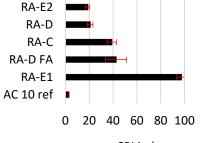

Level 2: Mix level Cracking resistance – strength assessment (SCB)



- Higher K_{IC} □ higher strength
- Higher CRI □ higher cracking resistance
 - AC ref: lowest K_{IC} and high CRI
 - Mixes with RA ranking:
 - RA D: low K_{IC} and highest CRI
 - RA C: highest stress + K_{IC}
 - RA D-FA and E1: most aged, lowest CRI
- Ranking confirms CBI values of pure RA







Cracking resistance – strength assessment (IDT/ITS)

- Indirect tensile test (IDT/ITS) principle
- IDT samples: Ø150 mm H=66 mm 7% air voids
- Mixes with highly aged binder, have highest ITS and lowest CRI (RA E1 and D-FA)
- Mix with RA C: Higher ITS value compared to other
- Ranking confirms CBI values of pure RA

Level 2: Mix level Other performance requirements/considerations

Water sensitivity:

- AC surf: ITS-R > 80% (Flemish requirement)
- All mixes > 80%

Raveling

- DSD 25°C 2 kN 50 cycles
- studied mixtures quite resistant (< 120 g/m²)
 - even with the inclusion of a very aged

RA material (RA E1)

General take-away points

Introduction of a 2-level framework to evaluate durability of high recycled surface layer mixtures

- Level 1: RA characterization (100 % RA)
 - CBI

 a solvent-free method; captures global response of RA-material
 - Higher CBI

 □ RA materials with more brittle behaviour & higher ageing severity
- Level 2: BMD Performance approach on mix level (50% RA inclusion)
 - No (or limited) risks detected for water sensitivity, rutting, and raveling
 - Risky mixtures identified regarding compactability and cracking resistance

Tine Tanghe

Researcher

T +32 2 766 03 30

t.tanghe@brrc.be

Alexandros Margaritis

Researcher

T +32 2 766 03 56

a.margaritis@brrc.be

João Crucho

Researcher

T +32 2 766 03 40

j.crucho@brrc.be