# REFINED TEST METHODS AND SPECIFICATIONS TO IMPROVE COLD RECYCLING PERFORMANCE

#### **David Jones and Stefan Louw**

University of California Pavement Research Center, Davis, California

2<sup>nd</sup> International Workshop on Asphalt Recycling Technologies
Aachen, Germany
September 8-9<sup>th</sup>, 2025

Davis • Berkeley CENTER



## **Outline**

Introduction

Overview of specifications



Specification assessment

Conclusions & recommendations



#### Introduction

- Cold recycling procedures and recycling agents have all evolved separately and tend to be siloed
- Specifications and mix design methods have also been developed separately, often based on HMA
- Nobody has really questioned origins, appropriateness, or standardization









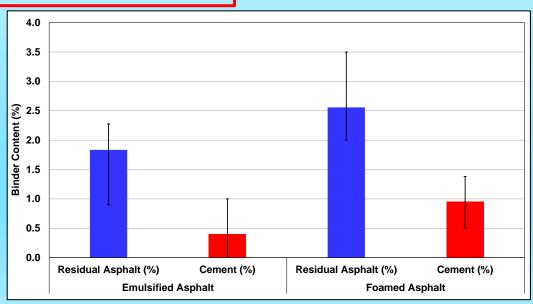
#### Introduction

- UCPRC research roadmap
  - FDR-FA pilot study in 2002
  - Phase 1
    - FDR with foamed asphalt
  - Phase 2
    - FDR with no recycling agent, emulsified and foamed asphalt, and cement
  - Phase 3
    - PDR and CCPR
  - Phase 4
    - Gaps in the knowledge/implementation
      - Standardization (cold recycling to bottom of distress / deeper)
      - Inverted pavement
      - Recycling asphalt concrete with high rubber content
      - Tack coat under in-place cold recycling
      - Rejuvenators



#### Introduction

- Before 2022, FDR and PDR, and EA and FA had different specifications and mix design procedures
- Updated Caltrans nSSPs for PDR and CCPR were released in 2022
  - EA and FA were combined into single nSSP, but were still considered as different materials in terms of mix design, QC, and acceptance
  - nSSP required doing both testing procedures regardless of recycling agent
- Study was initiated to provide recommendations for standardizing specs and test methods for cold recycling
  - Field and laboratory








#### **Historical Data Review**

- Statewide PDR construction projects (FA permitted after 2018)
  - 223 emulsified asphalt mix designs with Marshall stability (>5.6 kN then 6.7 kN dry)
    - Average 1.8% residual bitumen / 0.4% cement
  - 26 foamed asphalt mix designs with ITS (>240 kPa wet)
    - Average 2.6% bitumen / 1% cement



## **Outline**

Overview and introduction

Overview of specifications



Specification assessment

Conclusions & recommendations



## **Specification Overview Prior to Study**

| Agency          | Year  | Method                      | Material | Gradation          | Compaction Method                   | Test Method | Min. Strength | Condition |
|-----------------|-------|-----------------------------|----------|--------------------|-------------------------------------|-------------|---------------|-----------|
| Caltrans        | 2005  | LP-8                        | CIR-EA   | Medium/coarse      | Marshall                            | MS          | 5.6 kN        | Dry       |
|                 | 2005  |                             |          |                    | Gyratory                            | IVIS        |               |           |
|                 | 2016  | LP-8-EA                     | PDR-EA   | Medium/coarse      | Gyratory                            | MS          | 5.6 kN        | Dry       |
|                 | 2016  | LP-8-FA                     | PDR-FA   | Medium/coarse      | Gyratory                            | ITS         | 240 kPa       | Wet       |
|                 | 2022  | CT 315/CT 316               | PDR-EA   | Medium/coarse      | Marshall                            | MS          | 6.7 kN        | Dry       |
|                 |       |                             | CCPR-EA  |                    | Gyratory                            | IVIO        |               |           |
|                 | 2022  | CT 315/CT 316               | PDR-FA   | - Medium/coarse -  | Marshall                            | - ITS       | 240 kPa       | Wet       |
|                 |       |                             | CCPR-FA  |                    | Gyratory                            |             |               |           |
| ARRA/<br>AASHTO | 2016/ |                             | PDR-EA   | Fine/medium/coarse | Marshall                            | MS          | 5.6 kN        | Dry       |
|                 | 2010/ | ARRA CR201/<br>AASHTO M 352 |          |                    | Gyratory                            | IVIS        |               |           |
|                 | 2023  |                             |          |                    | Gyratory                            | ITS         | 310 kPa       |           |
|                 | 2017/ | ARRA CR202/                 | PDR-FA   | Fine/medium/coarse | Marshall                            | ITS         | 310 kPa       | Dry       |
|                 | 2023  | AASHTO MP 38                |          |                    | Gyratory                            | 113         |               |           |
| Wirtgen/<br>TG2 | 2012  | Wirtgen CR Manual           | PDR/FDR  | Provided in spec.  | Vib. hammer to Marshall or Mod.     | ITS         | 225 kPa       | Dry       |
|                 |       |                             |          |                    | Proctor density                     |             | 100 kPa       | Wet       |
|                 | 2017  | Wirtgen CR Manual           | PDR/FDR  | Provided in spec.  | Vib. hammer to Mod. Proctor density | ITS         | 225 kPa       | Dry       |
|                 |       |                             |          |                    |                                     |             | 100 kPa       | Wet       |
|                 | 2020  | TG2                         | PDR/FDR  | Provided in spec.  | Vib. hammer to Mod. Proctor density | ITS         | 225 kPa       | Dry       |
|                 | 2020  |                             |          |                    |                                     |             | 125 kPa       | Wet       |

## **Overview of Current Specification Acceptance**

- Assumptions in the specifications:
  - 1. PDR-EA and PDR-FA behave differently and require different testing methods
  - 2. Gyratory compaction (30 gyrations) = Marshall compaction (75 blows/face)
  - 3. Recycled layer performance with wet ITS of 240 kPa = dry stability of 6.7 kN



## **Outline**

Overview and introduction

Overview of specifications



Specification assessment

Conclusions & recommendations



## **Binder Content**

- Reviewed 7 projects under 2022 nSSP
- Compared:
  - Test method on binder content selection
  - Compaction method/density
  - Conditioning
  - ITS and stability
  - Stiffness

| EA Mix Design                     | ITS<br>(220 kPa) | ITS<br>(240 kPa) | Stability<br>(6.7 kN) |
|-----------------------------------|------------------|------------------|-----------------------|
| Passing mix designs               | 5                | 5                | 7                     |
| Mean residual bitumen content (%) | 1.8              | 2.2              | 1.6                   |
| Mean cement content (%)           | 0.7              | 0.9              | 0.6                   |

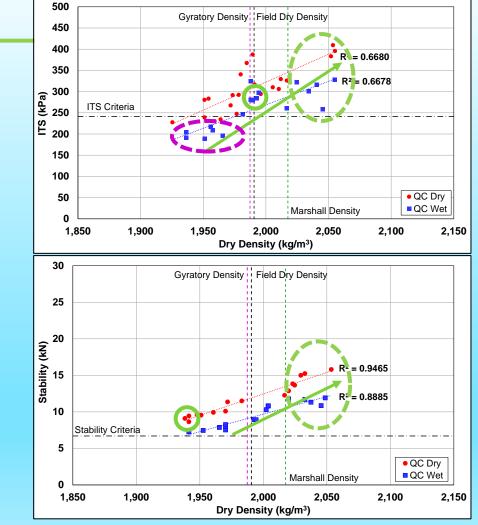




## **Field Compaction Method**

- Two PDR projects (2 lots per project, 360 specimens compacted)
- Compaction methods:
  - Gyratory compaction
    - 30 gyrations, = field density, = Marshall density
  - Marshall compaction
    - 75 blows per face
  - Vibratory compaction
    - = Field density, = 30 gyrations, = Marshall density
- Lowest to highest density:
  - Field (nuclear gauge)
  - Gyratory
  - Marshall

Similar


Higher

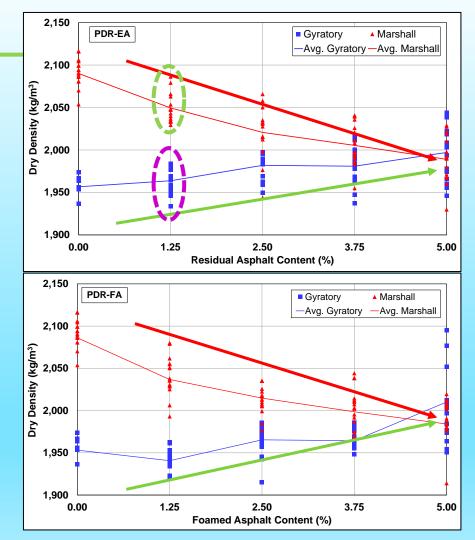




## **Field Compaction Method**

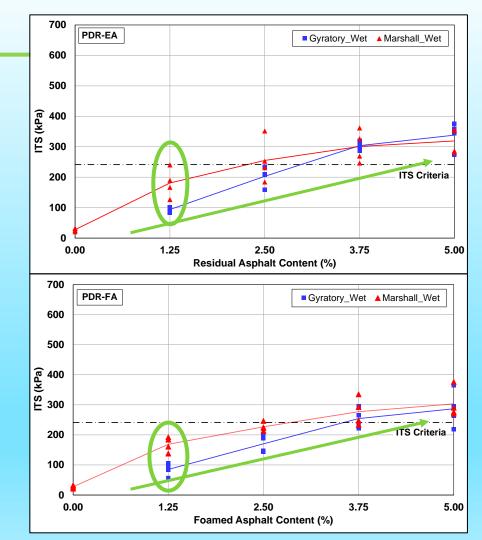
- Test method effect
  - ITS requires at least gyratory density to pass criteria
  - Marshall stability criteria can be passed at lower densities
- Compaction method effect
  - Strength/stability increases with increased density
  - Easier to pass test criteria when using Marshall compaction




## **Laboratory Testing Study**

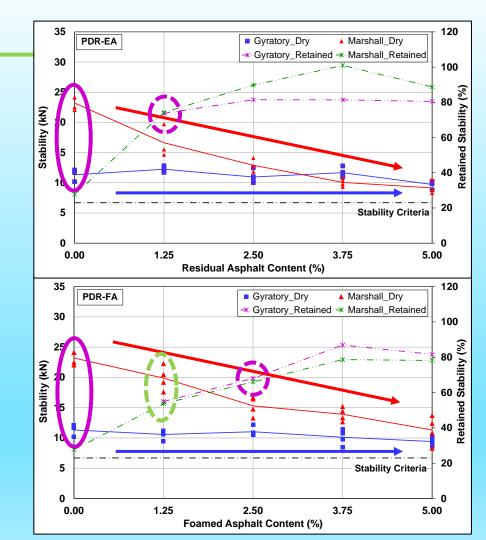
- Laboratory test factorial for EA and FA mixes
  - Two RAP sources
    - PDR and CCPR (crushed)
  - Two compaction methods
    - Gyratory and Marshall
  - Target strength/stability
    - ITS 240 kPa wet
    - Stability 6.7 kN dry
  - Fixed ratio of residual binder to cement of 2.5:1
    - 0% binder @ 0% cement\*
    - 1.25% binder @ 0.5% cement
    - 2.50% binder @ 1.0% cement
    - 3.75% binder @ 1.5% cement
    - 5.00% binder @ 2.0% cement\*
       \*Designs to bound experiment not recommended
  - 610 specimens / 3,200 kg of material




## **Compaction Method**

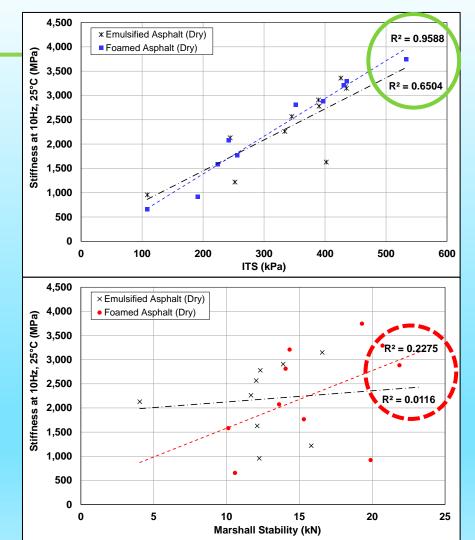
- Marshall density higher than gyratory
- Gyratory density increases with added binder content
- Marshall density decreases with added binder content
- Implications of using Marshall
  - Passing lab strengths cannot be achieved at field density
  - Field QC results can be misleading
  - Risk of lower-than-expected performance




## **Indirect Tensile Strength**

- Strength increases with added binder/cement
- Higher density from
   Marshall compaction
   produces higher strengths
   than gyratory for the same
   binder contents




## **Marshall Stability**

- Designs can pass with no binder
  - Retained stability requirement prevents passing designs
- Effect of compaction method
  - Gyratory: stability relatively unchanged with added binder contents
  - Marshall: stability decreases with added binder content
- Higher density from Marshall compaction produces higher stabilities



#### **Stiffness**

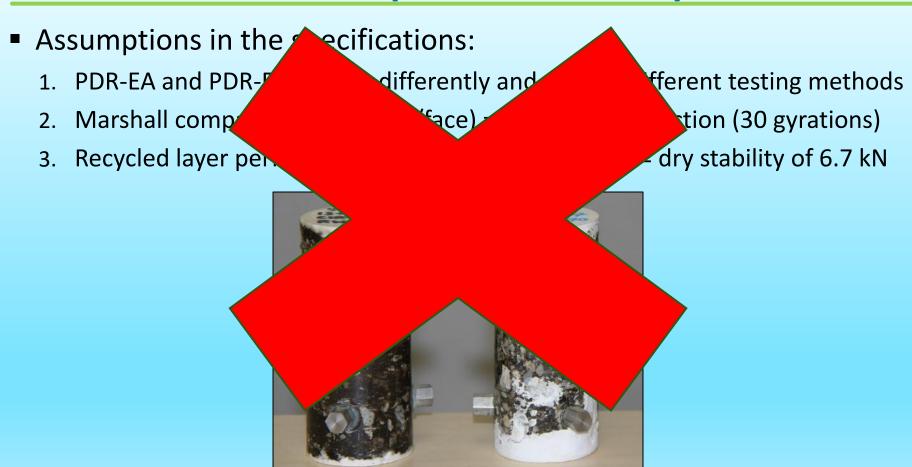
- ITS has a strong positive correlation with stiffness
  - Provides a measure of the structural contribution of the recycled layer
  - EA and FA are similar
- Marshall stability has a low correlation with stiffness
  - EA and FA are different
- Stiffness and stiffness change over time of all layers are critical components for *CalME* analyses



## **Outline**

Introduction

Overview of specifications




Specification assessment

Conclusions & recommendations



## **Overview of Current Specification Acceptance**



#### **Conclusions**

- Field density < gyratory density < Marshall density</li>
  - Adjusting Marshall blows to match gyratory is not a solution
- Gyratory compaction requires higher binder contents than Marshall to meet minimum strength/stability
- ITS passing criteria requires higher binder content than stability to meet minimum requirements
- Stability is not an appropriate measure of likely performance given trend of decreasing stability with increasing binder content and poor correlation between stability and stiffness
- Specifications have allowed contractors to choose recycling agent and compaction method to optimize results

#### Recommendations

- Focus on recycling to bottom of distress
- Recycling agent choice
  - Consider EA and FA as similar recycling agents
  - Allow contractor to choose
- Compaction method
  - Standardize to gyratory compaction for both mix design and QC, or
  - Allow vibratory compaction for QC using field density as target
- Mix design and acceptance test methods
  - Standardize test method to ITS only
- Test criteria
  - Set wet ITS criteria at ≥ 220 kPa
  - Use 2.5:1 bitumen:cement ratio





## Thank-you!



djjones@ucdavis.edu

(www.ucprc.ucdavis.edu/publications)