

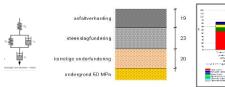
Flemish experience with BSM

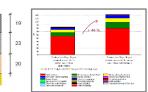
Prof. Wim Van den bergh

Dra. Ecem Nur Barisoglu

Content

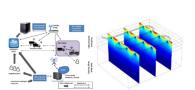
- SuPAR
- Flanders' vision towards sustainable use of RAP
- SuPAR's approach
- FOAM Project
- Structural Design for Flanders
- Environmental assessment LCA



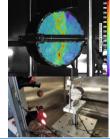

Sustainable Climate Resilient and Smart road structures Asphalt Technology

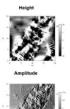
Basic, Strategic-basic and applied research

Sustainable Asphalt Pavement & Materials


- Ageing and healing mechanisms
- Recycling and regeneration technologies
- Surface characteristics
- Structural design and environmental impact
- Innovative materials

Smart road technologies and management:


- Road IT and FBG
- Asphalt Solar Collector
- Data analysis & management
- Optimization strategies



Experimental Material Research

Asphalt Laboratory
Advanced Rheological Binder Laboratory
Microstructure Laboratory
VOC test lab

Test tracks

Asphalt Innovation Symposium

12th meeting: **EATA 2027** June 8–10, 2027

hosted by University of Antwerp, Faculty of Applied Engineering

COST ACTION CA 24141 CRIPI

Climatic Resilience Initiative for Pavement Infrastructure

Flanders' vision towards sustainable use of RAP

- Flemish road authority supports industry towards sustainable use of materials (including recycling) via standards, GPP, financial benefits
- Pavement sector CO-road map: production, material and energy use
- Promising: the use of (processed) RAP
 - highest potential via reuse as asphalt (bound) and as aggregate (unbound)
 - huge resource yearly and in future
 - 4.8 Mt new asphalt
 - 2.3 Mt site-won asphalt,
 - 1.3Mt RAP in asphalt
 - 1.0Mt used as aggregate
 - → Yearly more than 2Mton accumulated in roads since...60 years...
- Ambition SuPAR Flanders: increased optimized use of RAP no higher environmental impact

SuPAR's approach

- RAP can be used in asphalt preferred
- RAP can be used in base as alternative for new aggregates
- Condition:
 - no higher environmental impact
 - "better to use RAP in base than in asphalt if impact is less"
 - transport from/to sites/ hinder social aspects
 - less use of new resources: RAP instead of new aggregates/binder
 - less use of energy /CO₂: RAP-composite instead of cement treated base
 - high quality of base material: semi-bound better than unbound/cracking material

Test Track Assenede AWV

Project FOAM (2021-2023)

- Bitumen-Stabilised Material
- Collaboration with industry
- Prestudy mix design
- Structural Design
- Demonstration by 2 test tracks (KMA)
- Monitoring of construction process
- Post study
 - sampling cores
 - lab versus in situ
 - energy: LCA/LCCA

Outcome FOAM

- Material for base layer (larger sites)
 - Alternative for unbound and cementtreated base layer material
- Guidelines for Flemish Industry
- Justification for application
- Flemish Standard SB250 (2025)
- Monitoring of applications
- 2025-2026: Kielsbroek
- Future steps: airfields, Green Public Procurement
- Monitoring

15-4 Funderingen – bitumengebonden fundering

bitumengebonden fundering toegevoegd

4.11 Bitumengebonden fundering

4.11.1 Beschrijving

Een bitumengebonden fundering is een semi-flexibele fundering waarbij granulair materiaal van een asfaltverharding wordt samengebonden met bitumen, cement en water.

4.11.2 Materialen

De materialen ziji

bitumengebonden funderingsmengsels volgens SB250-24-5.3.6

Final reports

Partners

- · Part II Market potential for BSM in Flanders
- Part III Mix design of BSM
- Part IV Structural design of pavements with BSM base
- Part V Sustainability assessment of pavements with BSM
- Part VI Syntheserapport proefvakken

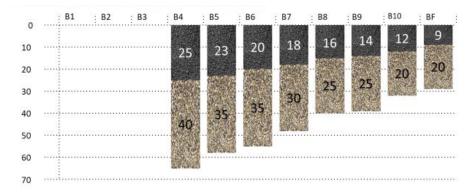
Duurzame funderingen door in situ recycling met schuimbitumentechnologie

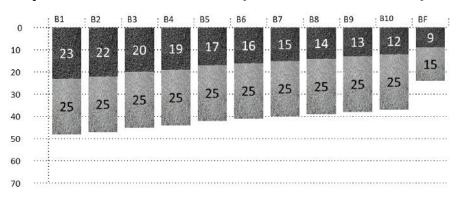
PART III:

Mix design of BSM

All rights reserved FOAM-TEAM

Odisee


https://www.uantwerpen.be/en/research-groups/supar/research/research-projects/foam/


Structural Design

- Typical Flemish Asphalt Roads:
 - Asphalt: surface layer and 1/2/3 base layers
 - Base: unbound or bound (cement-treated/lean asphalt/lean asphalt)
 - Subbase
- Structural design via asphalt fatigue failure, bound base failure and permanent deformation in subbase
- Typical material properties and failure criteria in standards
- Definition of Standard Structures based on #ESAL_{100kN}

Asphalt + unbound base (B7=1..2 MESAL)

Asphalt + cement-base (B8=0.5 .. 1 MESAL)

Structural Design

		•			, , ,
Layer	Material	Design parameter	Response location	Failure mode (Terminal condition)	Transfer function N= the maximum allowed number of loading repetitions
AC layers	Bitumen mix	Horizontal tensile strain Eh "m/m"	Bottom	fatigue cracking @ %20 lane area cracked	$N = \left(\frac{0,0016}{\varepsilon_h}\right)^{4,76}$
	Bitumen mix with high stiffness AVS	Horizontal tensile strain Eh "m/m"	Bottom	fatigue cracking @ %20 lane area cracked	$N = \left(\frac{0,0081}{\varepsilon_h}\right)^{7,39}$
Base layer	Cement stabilised material	Horizontal tensile strain Eh "m/m"	Bottom	fatigue cracking @ %20 lane area cracked	$\log N = 12 - 8000 * \mathcal{E}_h$
	Lean concrete (gravel)	Horizontal tensile stress oh "MPa"	Bottom	fatigue cracking @ %20 lane area cracked	$\log N = 14 * \left(1 - \frac{\sigma h}{1.20}\right)$
	Lean concrete (gravel-bitumen)	Horizontal Tensile strain Eh "m/m"	Bottom	fatigue cracking @ %20 lane area cracked	$N_f = \left(\frac{0.00111}{\varepsilon h}\right)^5$
	Foam-BSM / Emulsion-BSM Stabilized material	Deviator Stress Ratio DSR	Roughly at top ¼ depth in BSM	shear permanent deformation @ 10mm rut- depth with Reliability 90%	Stellenbosch BSM Design Function (1): $log N = A - 57.286(DSR)^3 + 0.0009159(P_{MMD}.RetC)$
Subgrade	Sand/clay	Compressive vertical strain ev "m/m"	Тор	permanent deformation @ 12.5mm rut- depth	$\frac{1}{N} = \left(\frac{\varepsilon_{\nu}}{0.011}\right)^{1/0.23}$

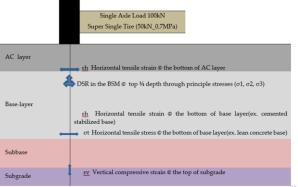
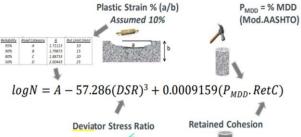



Figure 3: Critical analysis positions in the pavement structure

Stellenbosch BSM function (NEW)

New Mechanistic Empirical Structural Design Function

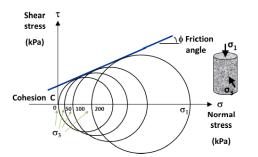
Deviator Stress Ratio DSR =
$$\frac{\sigma_d}{\sigma_{d,f}} = \frac{\sigma_1 - \sigma_3}{\sigma_{1,f} - \sigma_3}$$

$$\sigma_{1,f} = \frac{(1+\sin\emptyset).\sigma_3 + 2.C.\cos\emptyset}{(1-\sin\emptyset)}$$

DSR Deviator Stress Ratio

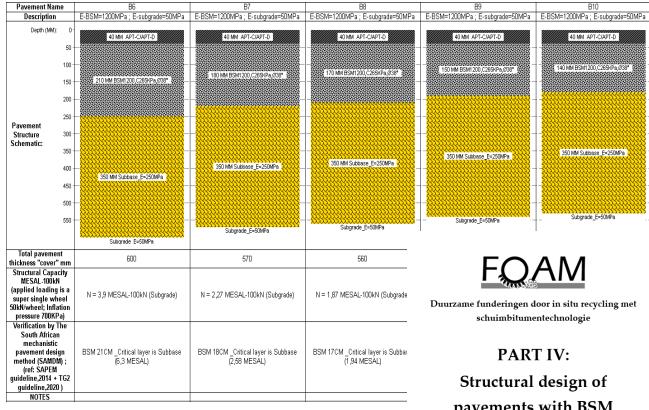
 σ_1

Major principle stress in the layer (KPa)


σ₃ Minor principle stress in the layer (KPa)

σ_{1,f} Major principle stress at failure from a triaxial test (KPa)

Cohesion value of BSM from project mix design (KPa)


Friction Angle of BSM from project mix design

Structural Design

Pavement Name	В	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10
Description		E-BSM=800MPa;	E-BSM=800MPa;	E-BSM=800MPa;	E-BSM=800MPa;	E-BSM=800MPa; E-subgrade=150MP	E-BSM=800MPa;	E-BSM=800MPa;	E-BSM=800MPa;	E-BSM=800MPa;	E-BSM=800MPa;
		30 MM AC top	30 MM AC top	30 MM AC top	30 MM AC top	30 MM AC top	E-subgrade- IOUMP	C-Subgrade-ToomP	E-subgrade- IOUMP	E-subgrade-roome	E-Subgrade-150MP
Pavement Structure Schematic:	0 - 100 - 200 - 300 - 400 - 500 -	230 MM AC underlayer(s)	200 MM AC underlayer(s) 9300 MM 9300 MM 9300 C-55K Pa,033F	30 MM AC top 170 MM AC 1 170 MM AC 2 Inderlayer(s) 300 MM SESMOD C2864 Pa 000* 350 MM SSubbase E-250	30 MM AC top 160 MM AC underlayer(s) 240 MM 953600 C,256K Pa,039* Pa,039* Subbase E=250 MPa	140 MM AC top 140 MM AC underlayer(s) 150 MM Session CASSK Ps.000° Ps.000°	40 MM AC top 120 MM AC underlayer(s) 10.0 MM SISSHOOD CASES Po 933* 350 MM Subbase E-250 MPa	40 MM AC top 100 MM AC underlayer(s) 50 MM 95 BSM00 (2595 Pa (939 Pa (939 MPa) Subbase E=250 MPa	40 MM AC top 90 MM AC underlayer(s) 140 MM 555M00, 256K Pa 938* Subbase E=20 MPa Subbase E=20 MPa	40 MM AC top 90 MM AC underlayer(s) 140 MM 50 MM AC underlayer(s) 140 MM 50 MM AC underlayer(s) 150 MM AC underlayer(s) 50 MM AC top 150 MM AC top	40 MM AC top 80 MM AC underfayer(s) stressessessessessessessessessessessessess
	700 + 800 + 900 +	350 MM Subbase_E=250 MPa Subgrade E=150MPa	Subbase_E=250 MPa 	MPa Subgrade E=150MPa	- Subgrade_E=150MPa -	Subgrade_E=150MPa	_ Subgrade_E=150MPa _				
Total pavement thickness "cover" r		910	880	850	780	700	670	640	620	620	600
Structural Capaci MESAL-100kN (applied loading is super single whe 50kN/wheel; Inflati pressure 700KPa	s a el ion	N = 116 MESAL- 100kN (AC layer)	N = 56 MESAL- 100kN (AC layer)	N = 26,5 MESAL- 100kN (AC layer)	N = 17,6 MESAL- 100kN (AC layer)	N = 8,4 MESAL- 100kN (AC layer)	N = 5,8 MESAL- 100kN (AC layer)	N = 3,3 MESAL- 100kN (AC layer)	N = 2,4 MESAL- 100kN (AC layer)	N = 2,2 MESAL- 100kN (AC layer)	N = 1,7 MESAL- 100kN (BSM layer)
Verification by Th South African mechanistic pavement design method (SAMDM) (ref: SAPEM guideline,2014 + T guideline,2020)	n); ⁻ G2	N > 100 MESAL- 100kN (AC layer)	N = 66 MESAL- 100kN (AC layer)	N = 33,4MESAL- 100kN (AC layer)	N = 23,1 MESAL- 100kN (AC layer)	N = 11,8 MESAL- 100kN (AC layer)	N = 8,3 MESAL- 100kN (AC layer)	N = 4,9 MESAL- 100kN (AC layer)	N = 3,6 MESAL- 100kN (AC layer)	N = 3,4 MESAL- 100kN (AC layer)	N = 2,7 MESAL- 100kN (AC layer)

40 MM APT-C/APT-D

150 MM BSM1200,C265KPa,Ø38*

350 MM Subbase_E=250MPa

Subgrade_E=50MPa

Duurzame funderingen door in situ recycling met schuimbitumentechnologie

PART IV:

Structural design of pavements with BSM

All rights reserved FOAM-team

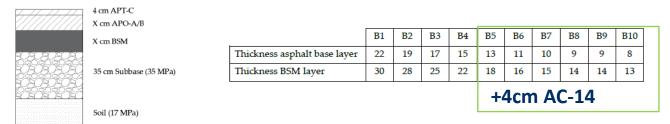
40 MM APT-C/APT-D

140 MM BSM1200,C265KPa,Ø38°

350 MM Subbase_E=250MPa

Subgrade_E=50MPa

It works... Lareco

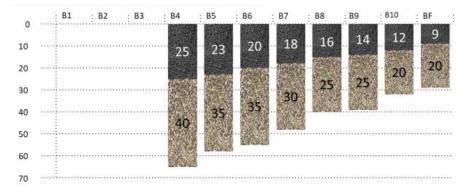

Structural Design - Flanders

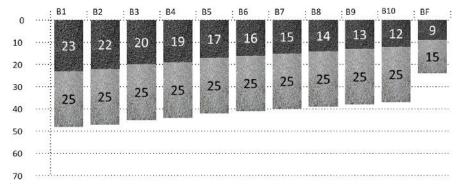
Proposed standard structures Flanders with BSM

1 Assumptions

Subgrade 50 MPa (compressibility modulus 17 MPa); Subbase 250 MPa (compressibility modulus 35 MPa); BSM 1.000 MPa, Cohesion = 265KPa and Friction angle = 38°

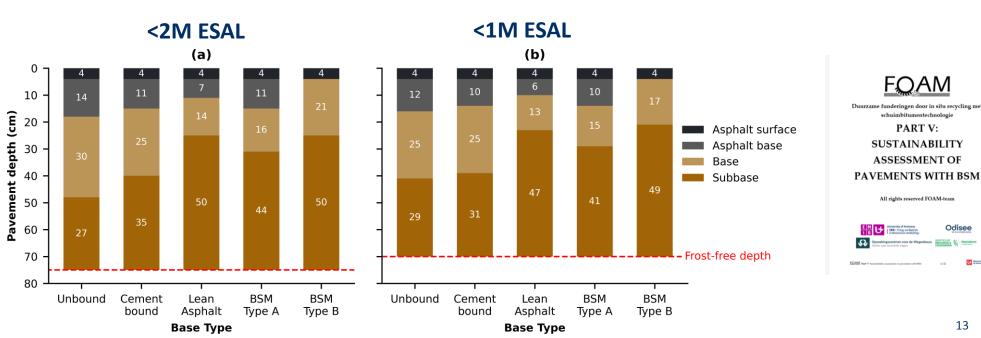
2 Standard structures with asphalt base layer


3 Standard structures without asphalt base layer


More information in Final Report PART IV: Structural design of pavements with BSM.

Asphalt + unbound base (B5=4..8 MESAL)

Asphalt + cement-base (B7=1..2 MESAL)


Environmental Impact of Using BSM as Base Material

- Five alternative pavement structures with varying base layers per test track:
 - Asphalt pavement with **unbound base** (standard structure);
 - Asphalt pavement with **cement bound base** (standard structure);
 - Asphalt pavement with lean asphalt base (standard structure);
 - Asphalt pavement with **BSM type A base** (with asphalt Base Layer);
 - Asphalt pavement with **BSM type B base** (without asphalt Base Layer);

Comments:

- Constant asphalt surface thickness;
- Thickness asphalt base and base via (standard) design
- Thickness of subbase is mainly determined by frost-free depth

https://www.uantwerpen.be/en/researchgroups/supar/research/research-projects/foam/

Environmental Impact of Using BSM as Base Material – Results LCA (2023)

Overall similar conclusion for both test tracks: 1 m2

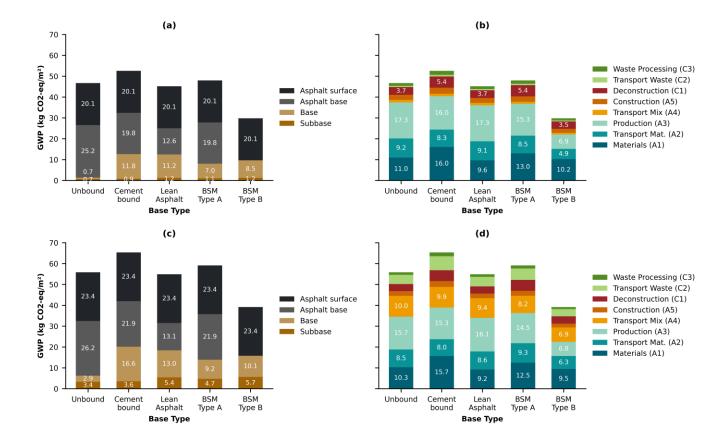
Full structure:

Cement bound structure highest impact; BSM type B structure lowest impact;

Focus on base:

Unbound base has lowest impact, but higher impact for asphalt base;

BSM base has the lowest impact of bound bases;


Life cycle phases:

Material and production phase are main hotspots;

Transport to production site;

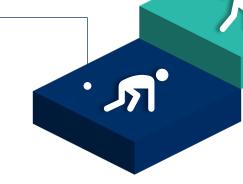
Deconstruction phase (TT1);

Transport of mixture to construction site (TT2);

"sustainability index": case dependant

BSM in Flanders: From Research to Deployment

Scaling & Deployment


More projects
Industry training
Policy integration

Standardization

Inclusion of BSM in SB250 v5
Defined test methods & specifications
Sector acceptance

Learning

Research & PhD project Laboratory testing Material & Structural design studies

Implementation

First pilot project (Kielsbroek - City of Antwerp)
Public procurement using SB250 v5
Performance monitoring

Experience

Test track demonstrations
Upscaling from lab to field
Early industry collaboration

BSM in Flanders: When and Where It Makes Sense

Sustainable GPP projects

Supports Green Public Procurement by lowering CO₂ emissions and life-cycle costs.

Low-cost rehabilitation

More cost-effective than hot recycling or reconstruction, with local material reuse.

Low-traffic roads and subbase layers

Proven application for municipal and rural networks, with efficient reuse of RAP

Heavily cracked pavements with good subgrade

Restores structure without full-depth reconstruction

Moisture-damaged pavements

Enhances cohesion and water resistance in high groundwater areas (e.g., polders); works best with stabilized subgrade

Heavy-traffic roads (future potential)

With optimized mix design and structural evaluation, BSM can be extended to motorways in Flanders.

BSM is a sustainable, cost-efficient solution for Flemish roads today, with growing potential for heavy-traffic applications

Challenges & Mitigations in BSM Projects

Challenge **Inconsistent pavement profile Rainfall during construction** Material transfer issue (bridging conveyor failure) High moisture in RAP **Manholes Testing challenges**

Mitigation Plan

- Detailed pre-investigation
- Adjust mix design with local variability
- Stabilize weak subgrade sections
- Forecast planning
- Fog spray / curing seals immediately after compaction
- Good truck flow management
- Regular equipment checks
- Trained / Skilled operators
- RAP protection
- Processing close to time of construction
- Pre-survey
- Mill or patch around manholes
- Use a smaller plant on manhole sections
- Adapted test protocols
- Trained staff
- Reliable field density checks

Pilot Sections in Flanders

Mixture composition:

100% crushed RAP (0/20) – stockpile 2.2 % Foamed bitumen (70/100) 1% Active Filler: Cement III/A 42.5 N

Towards a Sustainable Base Layer by Cold **Recycling Technology with Foamed Bitumen** Tetra Project HBC.2020.2094 FOAM

BESIX Viabuild!

Test Track 1

Test Track 2

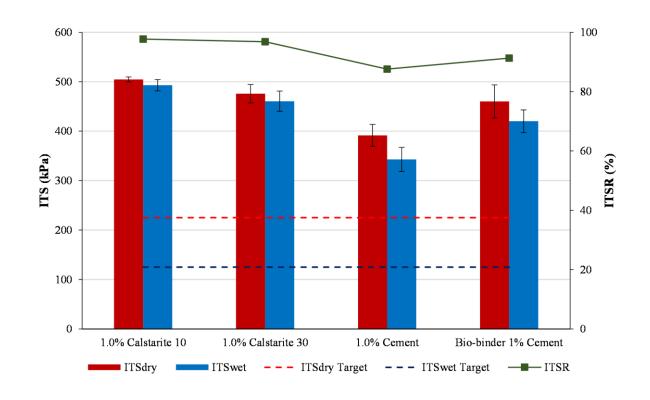
Fresh Findings with BSM

Can we produce BSM with Bio-based binders?

30% Bio-based binder (Latexfalt 30-85)

What are the effects of high-quality fillers?

- Improved homogeneity of mixture
- > Better moisture regulation
- Enhanced bonding and load-bearing capacity


Calstarite: Powdered, lime-containing binders derived from industrial by-products (fly ash)

Calstarite 10

- ~12% free CaO
- moderate reactivity, suitable for general stabilization

Calstarite 30

- > ~30% free CaO
- higher reactivity, suitable for challenging situations with high moisture

Fresh Findings on BSM

30% Bio-based binder + 1% cement

70/100 binder + 1% cement

70/100 binder + 1% Calstarite 10

70/100 binder + 1% Calstarite 30

Conclusions & Next Steps in Flanders

- > BSM is a sustainable and cost-efficient road solution.
- Supports Green Public Procurement by reducing CO₂ and life-cycle costs.
- Maximizes RAP reuse, lowering waste and transport needs.
- Effective for the rehabilitation of cracked or moisture-damaged pavements.
- > **Pilot projects** confirm feasibility and demonstrate performance.
- Standardized in SB250 v5, ensuring clear specifications and sector acceptance.
- > Research, test tracks, and training provide a strong knowledge base.
- > Challenges (e.g., moisture, manholes, RAP variability) can be managed with proper planning.
- Next step: scale up projects, expand industry training, and raise awareness.

"BSM is ready for wider deployment in Flanders."

THANK YOU

Project Manager
Prof. Wim Van den bergh

wim.vandenbergh@uantwerpen.be

PhD Student

M.Sc. Ecem Nur Barisoglu ecemnur.barisoglu@uantwerpen.be

