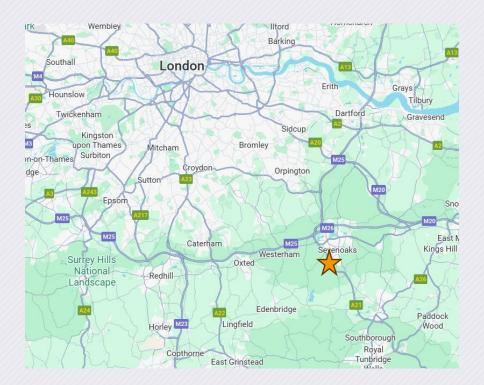
Surface course trials of 50% Reclaimed Asphalt in conjunction with and without biorejuvenators on the SRN in England

Matthew Wayman

September 2025

Introduction

- National Highways Net Zero 2030/2040/2050 plan aims to achieve net zero for construction and maintenance by 2040.
- The use of RA in surface courses has been identified as an important decarbonisation lever.
- Increased levels of RA in surface courses makes better use of highquality aggregate with high polished stone value (PSV) levels, reduces resource demand and minimises transportation costs.
- In the UK, 10% RA is commonly incorporated into surface course materials as standard practice. With the permitted limit set to rise from 10% to 20%.
- Net Zero research project commissioned to investigate emerging low carbon technologies.
- Presentation focuses on a recent trial on the A21, which assess the performance of 50% RA in conjunction with & without bio-rejuvenator.


Surface Course Trials with >20% RA in the UK with >5 years in-service

Site	Installed	Commercial	RA Content	Surface	nce RA Properties				
	Date	Vehicle Flow		Course	RA Source	Penetration	Softening Point	RA PSV	Service Life
		(CV/I/day)				(dmm)	(°C)		
A405 Bricket Wood	2004	1423	10 & 30%	SMA	Porous Asphalt	Not Declared	Not Declared	Not	Sections in service for
A403 Bricket Wood	2004	1423	10 & 30 %	SIVIA	Polous Aspirali	Not Declared	Not Declared	Declared	up to 17 years
M4 Cardiff	2006	3123	25%	TSCS	Porous Asphalt	16	69.6	Not	Replaced after 10
Wit Cardin	2000	3123	23 70	1000	1 010u3 Asprian	10	09.0	Declared	years
M25 J6-7 CW	2007	5658	23%	14mm TSCS	Porous Asphalt	19	67.8	59	Lane 1 replaced after 15 years with Lane 2 & 3 replaced after 17 years
M25 J6-7 ACW	2009	1701	40%	20mm TSCS	Porous Asphalt	Not Declared	Not Declared	Not Declared	In-service
M20 J2-3 SB	2016	306	30%	14mm TSCS	Existing TSCS	18	67.4	61	In-service
A1 (Mill Hill)	2016	2599	50%	14mm SMA	SMA	18	67.0	63	In-service
A40	2017	2706	50%	14mm AC	N/A	24	65.0	63	In-service
М3	2019	3005	20%	14mm TSCS	Existing TSCS	16	68.8	62	In-service
M25 J26-25	2019	7639	50%	14mm TSCS	Existing TSCS	34	63.0	65	In-service
M3 NB J6	2021	4471	50%	14mm TSCS	10/14 SMA	11 / 23	68.2 / 71.2	65	In-service

A21 Trial Design

- In total six trial sections were installed on Lane 1 and 2 of A21 in South East England.
- This section of carriageway is subject to an annual average daily flow of 18,408 vehicles per day (one-way).
- 50mm 0/14 Thin Surface Course System selected for the trial common surface course in England (AC mixture).
- Mixes with both Polymer Modified Binder (PMB) (lane 1)
- Mixes with 40/60 penetration grade binder (lane 2).
- Trial include 0% RA, 50% RA & 50% RA with a bio-rejuvenator.

Mix Designation	TSCS 0% RA	TSC 50% RA	TSCS 50% RA +	TSCS 0% RA	TSC 50% RA (Pen)	TSCS 50% RA +
	(PMB)	(PMB)	Bio-Rej (PMB)	(Pen)		Bio-Rej (Pen)
Trial Length (m)	694	740	754	694	740	754
Lane		Lane 1			Lane 2	
Binder	PMB	PMB	PMB	Pen	Pen	Pen
RA Content (%)	0%	50%	50%	0%	50%	50%
Bio-rejuvenator	No	No	Yes	No	No	Yes

A21 – Trial Collaboration

- Extensive collaboration to successfully deliver trial in 6 months:
 - Trial design
 - Departure from Standard Approval
 - RA sourcing & testing
 - Mix Design
 - Installation
 - Sampling
 - Testing

Constituents

Reclaimed Asphalt

RA Property		Grading Curve		
Binder Content (%)	4.5			
Recovered Penetration @25oC (dmm)	17	80 Binder 4 5% 70 Sg 60		
Recovered Softening Point (°C)	66.2	E 50		
Polished Stone Value	56	10		
Aggregate Abrasion Value	12	0		

 RA sourced from Thin Surface Course System from strategic road network.

Binder

- PMB = 75-130/75. Enhanced polymer content used for 50% RA.
- Pen = 40/60 pen. A 160/220 pen used for correction for 50% RA.

Bio-rejuvenator

ReLIXER® Sripath

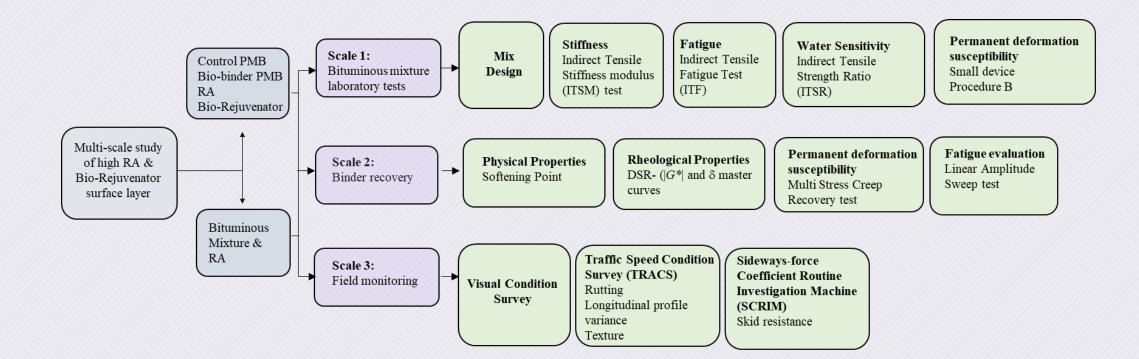
Mix Design

Mix Ref	1A	1B	1C	2A	2B	2C
Constituent	TSCS 0%	TSCS 50%	TSCS 50% RA	TSCS 0%	TSCS 50% RA	TSCS 50% RA+
	RA (PMB)	RA (PMB)	+ Bio-Rej	RA (Pen)	(Pen)	Bio-Rej (Pen)
			(PMB)			
Coarse	63%	41%	41%	63%	41%	41.1%
Aggregate						
Fine Aggregate	24%	0%	0%	24%	0%	0%
Reclaimed	0%	50%	50%	0%	50%	50%
Asphalt						
Filler	7%	5%	5%	7%	5%	5%
Fibre	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%
Virgin Binder	5.4%	3.4%	3.4%	5.4%	3.4%	3.4%
Added (%)						
WMA	0.1%	0.1%		0.1%	0.1%	
Bio-Rejuvenator	-	-	0.1%	-	-	0.1%

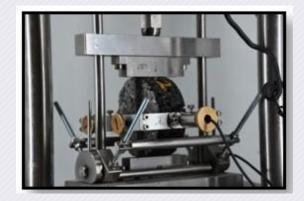
- Same coarse aggregate, fine aggregate, RA & filler used for all mixes.
- Designed to provide the same total binder content.
- WMA not used in bio-rejuvenator mixes due to limitations at asphalt plant regarding chemical lines.
- Presentations focuses on PMB mixes 1A-1C.

Production & Installation

- All surface courses were produced and installed by FM Conway between 4-12th September 2024.
- The 50% RA mixes were produced using a parallel drum RA drier.
- Bio-rejuvenator added directly to the mixer box.
- Installation complied with the specification requirements.
- Samples taken at asphalt plant for testing.
- Surface macro-texture & regularity measured during installation.


Section Ref	Section	Surface Macro-texture (mm) BS EN 13036-1
1A	TSCS 0% RA (PMB)	1.5
1B	TSC 50% RA (PMB)	1.8
1C	TSCS 50% RA + Bio-Rej (PMB)	1.8
2A	TSCS 0% RA (Pen)	1.5
2B	TSC 50% RA (Pen)	1.7
2C	TSCS 50% RA + Bio-Rej (Pen)	1.7

Experimental Programme

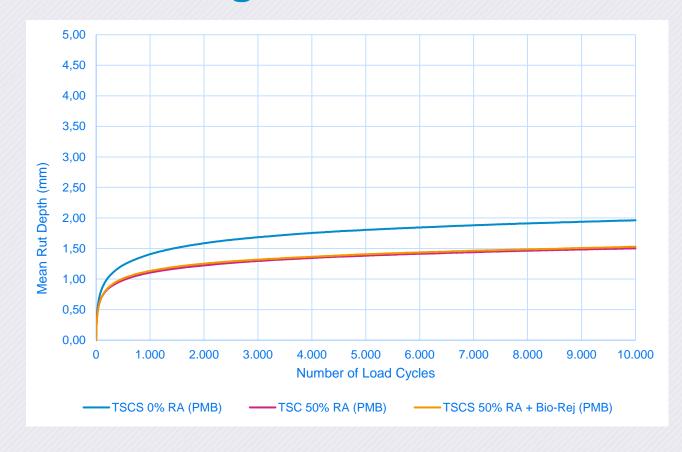


Bituminous Mixture Testing

Indirect Tensile Stiffness Modulus @ 20°C

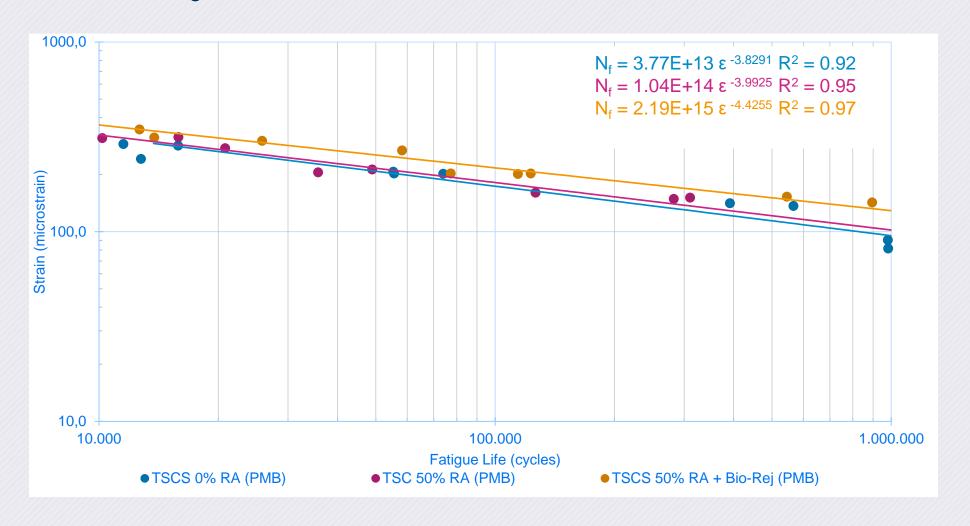
Mix Ref	Bituminous Mixture	Air Void Content (%)	Mean Indirect Tensile Stiffness Modulus (MPa)
1A	TSCS 0% RA (PMB)	1.5	5,687
1B	TSC 50% RA (PMB)	3.1	4,997
1C	TSCS 50% RA + Bio-Rej (PMB)	2.5	3,623

Water Sensitivity – Indirect Tensile Strength Ratio


Mix Ref	Bituminous Mixture	Air Void	Indirect Tensile Strength
		Content (%)	Ratio (%)
1A	TSCS 0% RA (PMB)	4.9	104
1B	TSC 50% RA (PMB)	6.4	87
1C	TSCS 50% RA + Bio-Rej (PMB)	5.6	98

Bituminous Mixture Testing

Wheeltracking Small Device @ 60°C

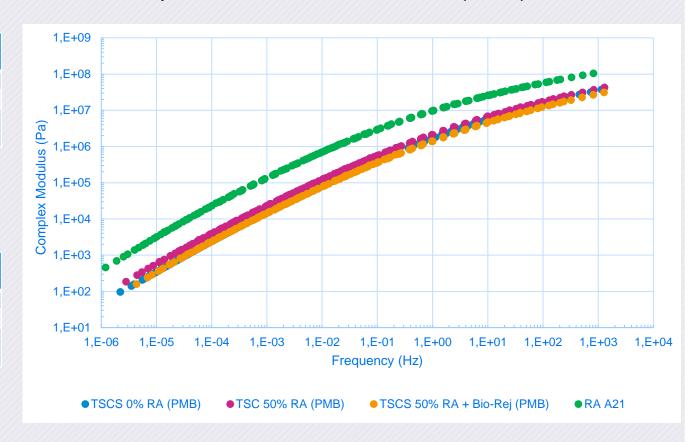


Mix Ref	Bituminous Mixture	Air Void Content (%)	Mean slope WTS _{AIR} (mm per 10 ³ load cycles)	Mean Proportion Rut Depth PRD air (%)	Mean Rut Depth RD at 10,000 Cycles (mm)
1A	TSCS 0% RA (PMB)	3.3	0.04	3.8	2.0
1B	TSC 50% RA (PMB)	3.9	0.03	2.8	1.5
1C	TSCS 50% RA + Bio-Rej (PMB)	3.8	0.03	2.9	1.5

Bituminous Mixture Testing

Indirect Tensile Fatigue Test @ 10°C

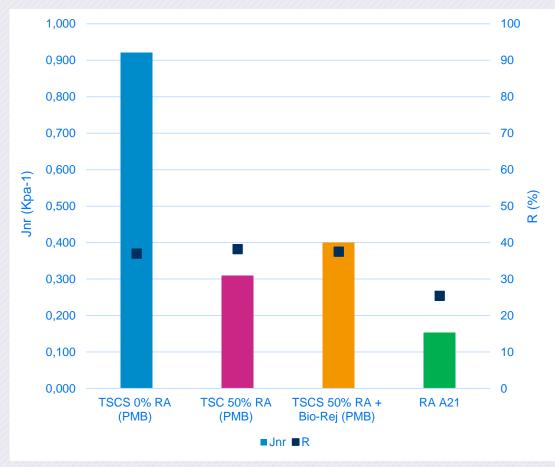
Recovered Binder Results from Bulk Samples

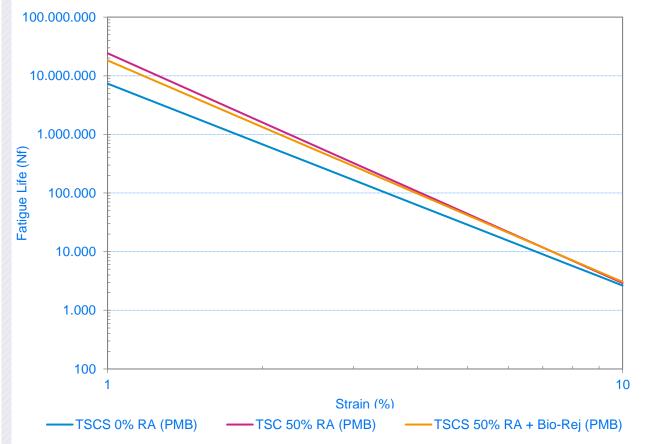

Recovered Penetration

Mix Ref	Recovered Binder from Mix	Recovered Penetration (BS EN 1426) (dmm)
1A	TSCS 0% RA (PMB)	51
1B	TSC 50% RA (PMB)	41
1C	TSCS 50% RA + Bio-Rej	46
	(PMB)	

Recovered Softening Point

Mix Ref	Recovered Binder from Mix	Recovered Softening Point (BS EN 1427) (°C)
1A	TSCS 0% RA (PMB)	57.4
1B	TSC 50% RA (PMB)	61.0
1C	TSCS 50% RA + Bio-Rej	60.8
	(PMB)	


DSR – Complex Modulus Master Curve (25°C)



Recovered Binder Results from Bulk Samples

LAS – Fatigue Line

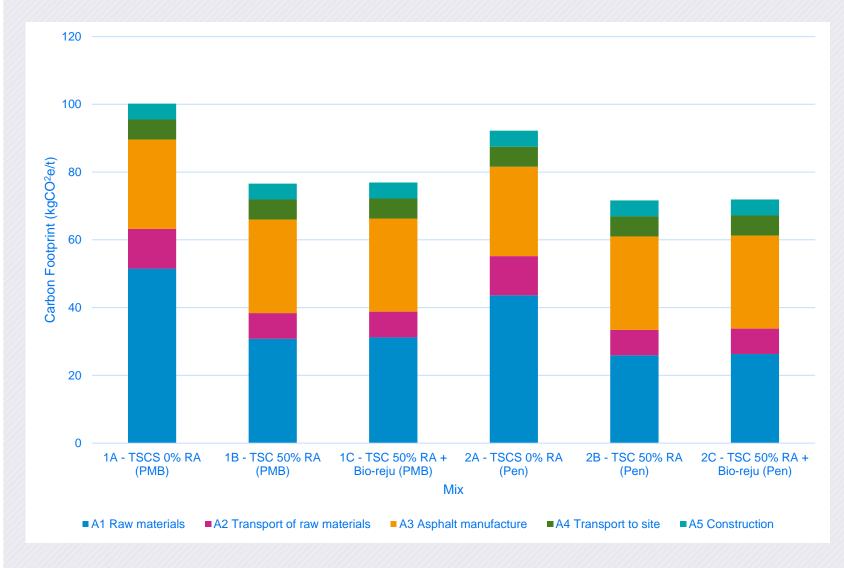
In-Service Performance (May 2025 - 7 months old)

Section 1A TSCS 0% RA (PMB) (Control)

Section 1B TSCS 50% RA (PMB)

Section 1C TSCS 50% RA + Bio-Rej (PMB)

Skid Resistance – SCRIM® (1 year)


0,80 0,70 0,60 0,50 Average CSC 0,40 0,30 0,20 0,10 0,00 TSCS 0% RA (PMB) TSC 50% RA (PMB) TSCS 50% RA + Bio-Rej (PMB) **2025**

SCRIM relative to scheme chainage

Average SCRIM

Carbon Footprint Analysis

- Carbon Footprint calculations based on the principles of the asPECT v4.2 tool (Wayman et al. (2014)).
- The analysis demonstrated saving of ~23 kgCO2e/t (23%) for the PMB mixes and ~20 kgCO2e/t (22%) for the penetration grade mixes through the incorporation of 50% RA in Stages A1-A3.

A21 Trial Summary

- The laboratory results demonstrate the feasibility to incorporate 50% RA and achieve the performance requirements defined for the SRN in England based on the RA and controls used for this study.
- The testing demonstrated that the inclusion of bio-rejuvenator reduced the stiffness of the mixes and increased both the water sensitivity and fatigue performance relative to the 50% RA mix without bio-rejuvenator.
- It was noted that the bio-rejuvenator increased the penetration and reduced the complex modulus of the recovered binders. This indicates that bio-rejuvenators can influence the overall properties of the bituminous mixture.
- The carbon footprint results indicate that higher RA contents have significant potential to reduce the carbon footprint.
- The site trial will continue to be monitored through annual visual assessments, traffic speed condition surveys (TRACS) and Sideway Coefficient Routine Investigation Machine (SCRIM) surveys for skid resistance testing.

Net Zero Asphalt Research

- Programme of further trials focused decarbonisation leavers including stacking technologies:
- Bio-based Binders
 - A30 Cutteridge bio-based binder (x2) installed 2023
 - A34 Chieveley and A2 Kingston bio-based binder, WMA and up to 30% RA installed 2024.
 - A1 Tuxford bio-based binder with 20% RA installed 2025.
- Lignin Modifiers
 - A590 Lignin binder & filler replacement installed 2025.
 - M53 Lignin binder replacement scheduled for September 2025.
- Graphene additives
 - A12 Hatfield graphene modified asphalt and up to 40% RA installed 2023.

The road to net zero

