

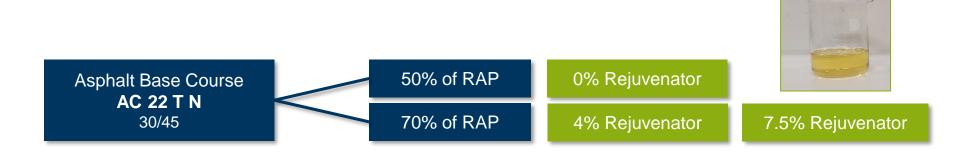
RUHR-UNIVERSITÄT BOCHUM

INVESTIGATING ASPHALT REJUVENATION –
THE USE OF RECLAIMED ASPHALT AND REJUVENATORS IN FIELD TRIALS

2nd International Workshop on Asphalt Recycling Technologies

Dr.-Ing. Nina Nytus

Motivation


New challenges in the reuse of reclaimed asphalt:

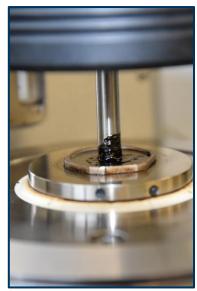
- More complex binder concepts due to modifications, increasing hardness of the binder in the RAP due to decades of (multiple) reuse and the use of rejuvenators
- "Maintenance before construction" but also the conservation of rock and binder resources and the possibility of reducing greenhouse gas emissions make it necessary to incorporate higher-quality asphalt granules into the asphalt pavement as well

Field Trial 1 – Asphalt Concepts

Rejuventor is a crude tall oil derived from a renewable resource comprising pine and other wood

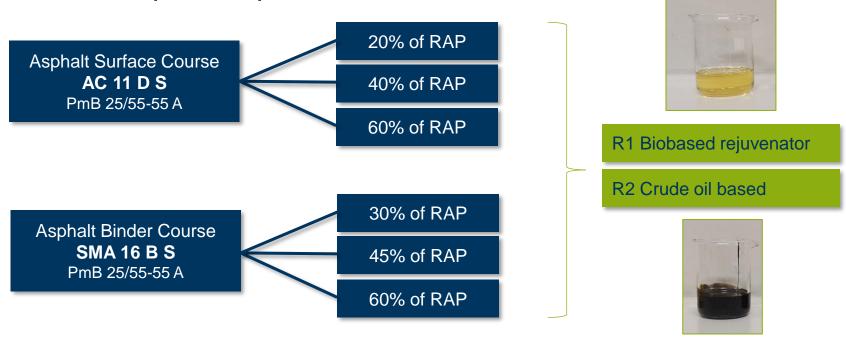

Field Trial 1 – Asphalt Concepts

- Rejuventor is a crude tall oil derived from a renewable resource comprising pine and other wood
- RAP Properties: 3.4% bitumen content, softening point ring and ball 71.4 °C
- Addition by spraying onto the asphalt granulate at the reclaimed asphalt conveyor belt



Field Trial 1 – Asphalt Concepts

Field Trial 1 - Test methods


Complex Shear Modulus and Phase Angle -20 °C to 150 °C

Dynamic Stiffness at -10 °C, 0 °C, 10 °C, 20 °C

Field Trial 2 - Asphalt concepts

Field Trial 2 - Asphalt concepts

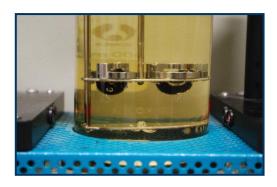
Asphalt Surface Course
AC 11 D S
PmB 25/55-55 A

20% of RAP
40% of RAP
60% of RAP

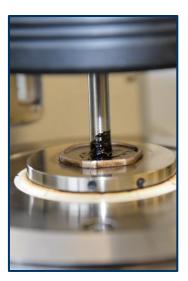
Asphalt Binder Course SMA 16 B S PmB 25/55-55 A 30% of RAP

45% of RAP

60% of RAP


R1 Biobased rejuvenator

R2 Crude oil based



Field Trial 2 - Test methods

Needle Penetration

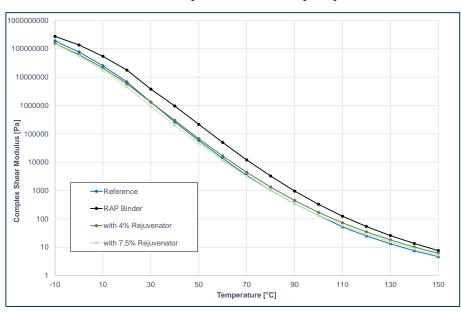
Softening Point Ring and Ball

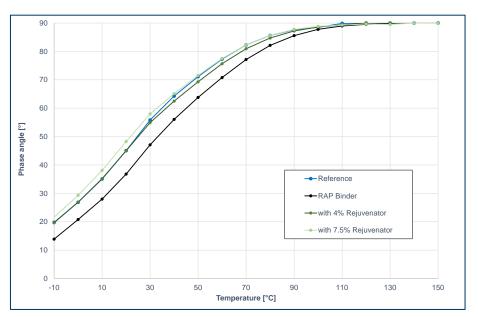
Elastic Recovery

Complex Shear Modulus and Phase Angle -20 °C to 150 °C

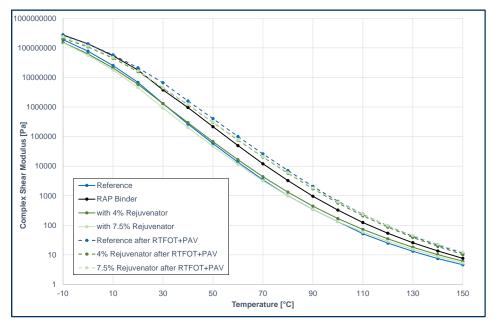
Field Trial 2 - Test methods

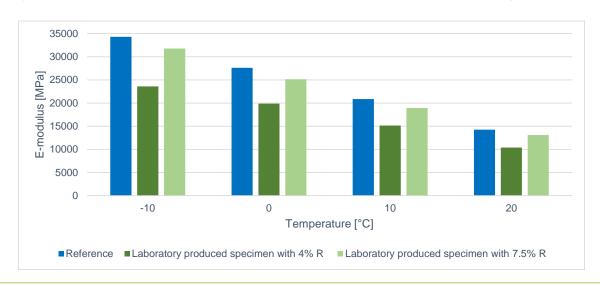
Dynamic Stiffness at -10 °C, 0 °C, 10 °C, 20 °C

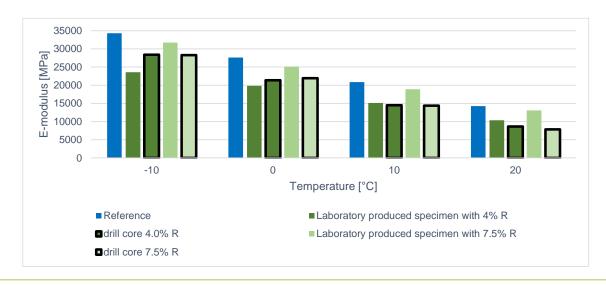

Permanent Deformation at 50 °C



Low-Temperature Behavior TSRS-Test


Field Trial 1 – Asphalt binder properties

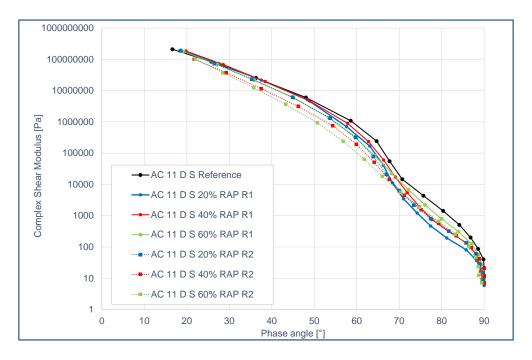

Field Trial 1 – Asphalt binder properties


Field Trial 1 - E-modulus

E-modulus of the different asphalt base mixtures according to EN 12697-26 (reference with 50% RAP and the variants with 70% RAP and rejuvenator)

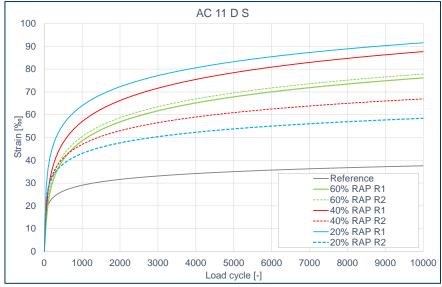
Field Trial 1 - E-modulus

E-modulus of the different asphalt base mixtures according to EN 12697-26 (reference with 50% RAP and the variants with 70% RAP and rejuvenator)

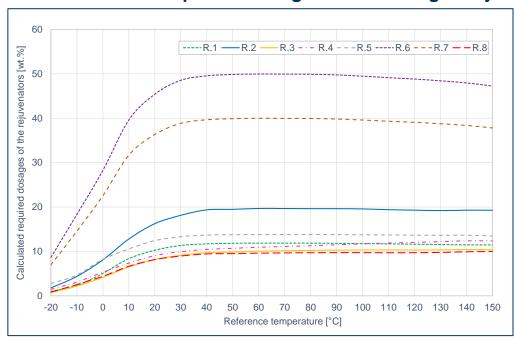


Field Trial 2 – Asphalt binder results

Variant		R&B EN 1427	Penetration EN 1426	T (G*= 15 kPa) EN 14770	δ (G*= 15 kPa) EN 14770	Elastic recovery EN 13398
Binder course	Reference 30% RAP R1	[°C] 64.0 65.5	[1/10 mm] 25.3 25.9	[°C] 62.8 64.6	[°] 70.2 70.5	[%] 72 61
	45% RAP R1 60% RAP R1 30% RAP R2	63.4 70.6 66.2	34.1 19.8 25.0	62.1 70.7 64.2	70.7 <i>70.5</i> 69.8	63 <i>49</i> 68
	45% RAP R2 60% RAP R2	63.4 64.1	29.0 30.0	62.3 63.6	70.0 69.4	61 58
Surface course	Reference 20% RAP R1 40% RAP R1 60% RAP R1 20% RAP R2 40% RAP R2	61.6 64.9 63.5 66.0 66.2 63.1	27.6 33.0 35.7 28.8 27.4 32.7	59.8 62.8 59.7 61.6 63.3 61.2	70.7 67.9 67.5 66.7 69.6 69.4	74 71 71 53 66 61
	60% RAP R2	65.1	33.5	57.7	67.9	50


Field Trial 2 – Asphalt binder results

Field Trial 2 – Asphalt Performance


Field Trial 2 – Asphalt Performance

Further Research Work

Influence of the temperature range on the dosing of rejuvenators

K. Schwettmann, D. Stephan, N. Nytus, M. Radenberg, and S. Weigel: "Post carbon road - The endless cycle of bitumen reuse" Proceedings of the 7th Eurasphalt & Eurobitume Congress v1.1, 2021

Conclusions

- Rejuvenators enable the addition of high proportions of RAP
- The binder properties can be precisely adjusted, particularly regarding binder stiffness. However, preliminary tests are necessary
- The influence of polymers on the elastic recovery becomes clear as the proportion of RAP increases and the proportion of fresh bitumen decreases
- Rejuvenators can have a positive effect on the cold behavior of bitumen and asphalt mixtures
- In the variants analyzed here, the variants with rejuvenators were found to have poorer resistance to deformation
- The dosage should be based on the asphalt performance and not solely on the contract parameter softening point ring and ball or equi-shear modulus temperature, which is common in Germany.

