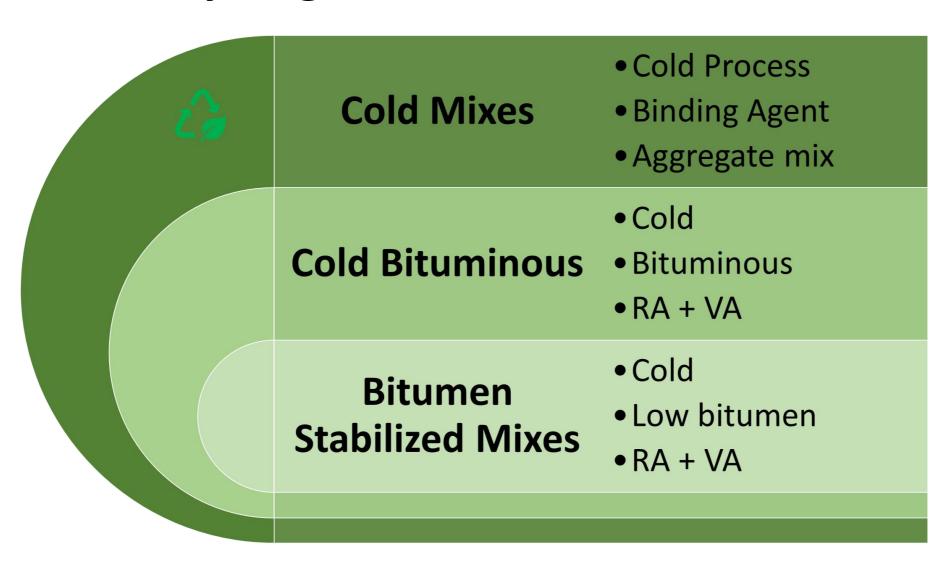


Using Mechanistic-Empirical method to develope a catalouge design for cold recycled pavements in Germany

Federal Highway and Transportation Research Institute Dr. Mehdi Kalantari | BASt

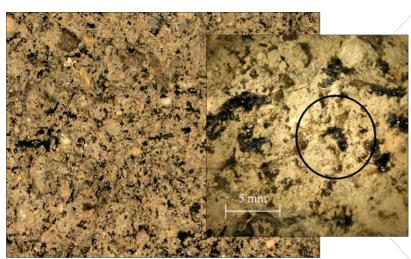
2nd International Workshop on Asphalt Recycling Technologies - ART2025

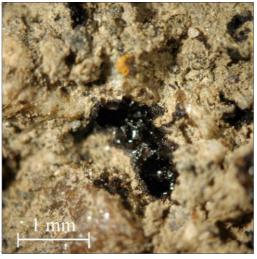


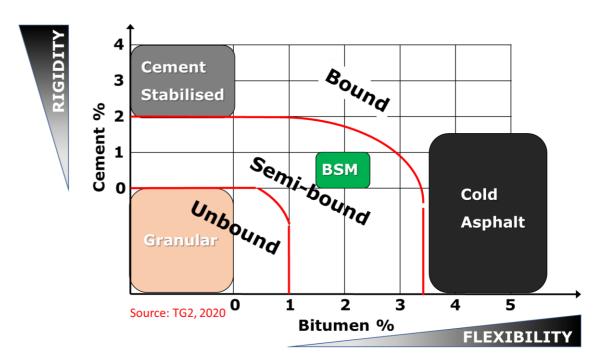
Contents

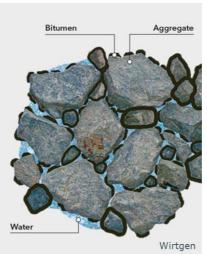
- Cold Recycling and Stabilization
- Bitumen Stabilized Material (BSM)
- The need for a catalogue
- ME design of pavements with BSM
- Proposed catalogue
- Validation
- Conclusion & Next steps

Cold Recycling & Stabilization

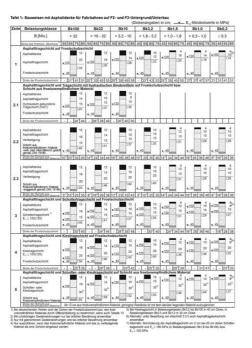


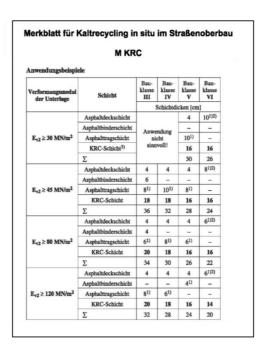



Bitumen Stabilized Material


- Distribution of the bonds
 - Continuous
 - Non-continuous
- Failure
 - Crack
 - Permanent deformation

Credit to Dave Jones University of California Pavement Research Centre

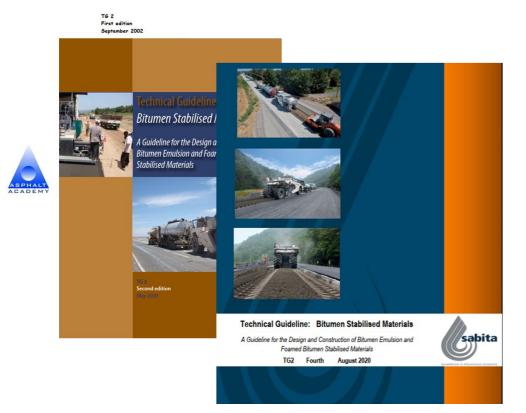


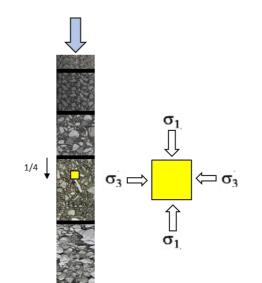


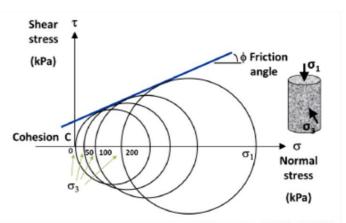

The need for a catalogue in Germany

- ✓ Potentials + Positive international feedbacks on BSM -> increasing interest in Germany
- Besides the catalogue method, a well established ME method
- But, they don't include the BSM

A fast solution, producing a catalogue based on the existing international standard




ME design of pavements with BSM


- ✓ Like any other ME design concept
- TG2 guideline

Interim Technical Guideline

The Design and Use of Foamed Bitumen Treated Materials

Source: TG2, 2020

Deviator Stress Ratio (DSR) =
$$\frac{\sigma_d}{\sigma_{d,f}} = \frac{\sigma_1 - \sigma_3}{\sigma_{1,f} - \sigma_3}$$

$$\sigma_{1,f} = \frac{(1 + \sin\emptyset) \cdot \sigma_3 + 2 \cdot C \cdot \cos\emptyset}{\sigma_{1,f} - \sigma_3}$$

where

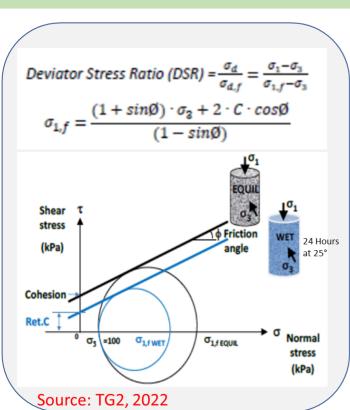
DSR = Deviator Stress Ratio expressed as a fraction

 σ_1 = Major principle stress in the layer (kPa)

 σ_3 = Minor principle stress in the layer (kPa)

 σ_{1f} = Major principle stress at failure from a triaxial test (kPa)

C = Cohesion value of BSM from project mix design (kPa)


Ø = Friction Angle of BSM from project mix design

ME design of pavements with BSM

Mechanistic Part

Material & Pavement Model

Empirical Part

Transfer Functions

Stellenbosch BSM Function (CAPSA,2019)

 $log N = A - 57.286(DSR)^3 + 0.0009159(PMDD.RetC)$

N = Number of axle repetitions to reach a set rut depth

P_{MDD} = BSM dry density expressed as a percentage of MDD (%)

DSR = Deviator Stress Ratio, as a fraction

RetC = Retained cohesion (%)

A = Reliability Coefficient linked to Road Category

	Reliability	Road Category	<u>A</u>	Rut Limit (mm)
I	95%	Α	1.71113	10
I	90%	В	1.79873	15
I	80%	С	1.88733	20
l	50%	D	2.00443	25

Source: TG2, 2022

Loudon's BSM Function LOUDON

$$\log N = A + B(RD) + C(RetC) + D(PS) + E(DSR)$$

N = Number of axle repetitions to reach a set rut depth

RD = Relative Density (%)

DSR = Deviator Stress Ratio, as a fraction

RetC = Retained cohesion (%)

PS = Allowable Plastic Strain (% of the layer thickness)

A = 1.55 (constant for 90% reliability)

B = 0.10 (empirical constant)

C = 0.05 (empirical constant)

D = 0.10 (empirical constant)

E = -22.3333 (empirical constant)

Source: Loudon

Design parameters

✓ The same loading classes as RStO 12/24

Input parameters for the design

■ BSM: 900 MPa, 0.3

Anti-frost: 200 (130) MPa, 0.49

Subgrade: 45 MPa, 0.49

From 0.3 to 1.0

to 0.3

From 0.3 to 1.0

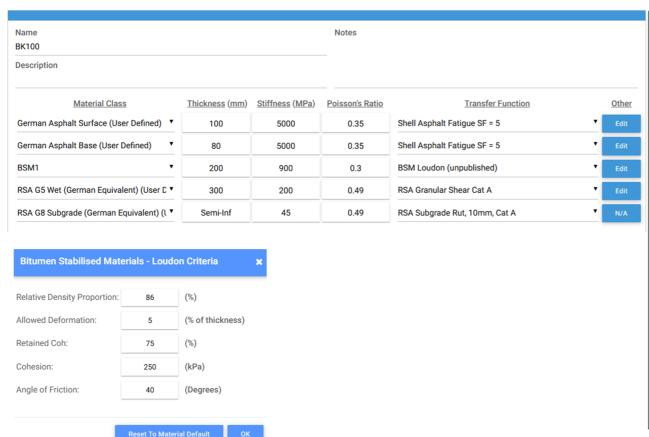
to 0.3

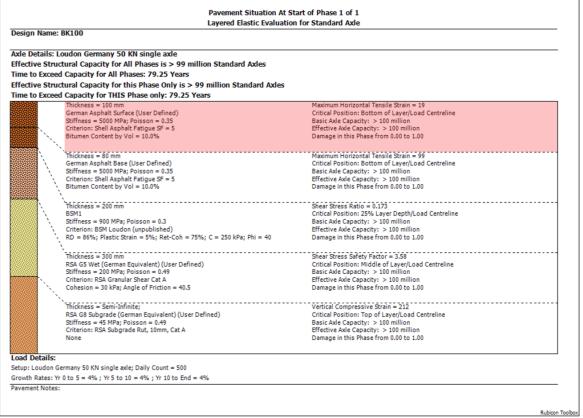
For Anti-frost layer, the modulus was calculated for a 30 cm layer over the

subgrade of 45 MPa to reach the desired Ev2 value (60 to 150 MPa) on top of that

Extra inputs for the BSM

Description	Parameter
Relative density	86%
Allowed deformation	5% of thickness
Retained cohesion	75%
Cohesion	250 kPa
Angleof friction	40°


Relevant design traffic and assigned load class (RStO 12/24, 2024)


Equivalent 10-t-standard axles (Million ESALs)	Load class				
Above 32	Bk 100				
From 10 to 32	Bk 32				
From 3.2 to 10	Bk 10				
From 1.8 to 3.2	Bk 3.2				
From 1.0 to 1.8	Bk 1.8				
From 0.3 to 1.0	Bk 1.0				
to 0.3	Bk0.3				

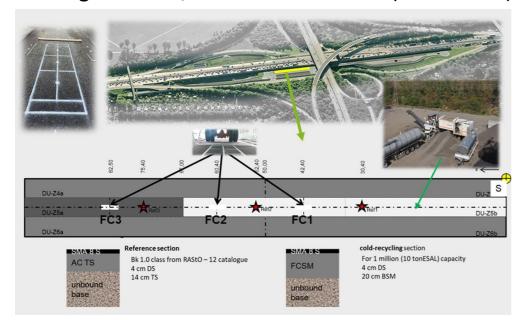
Design software

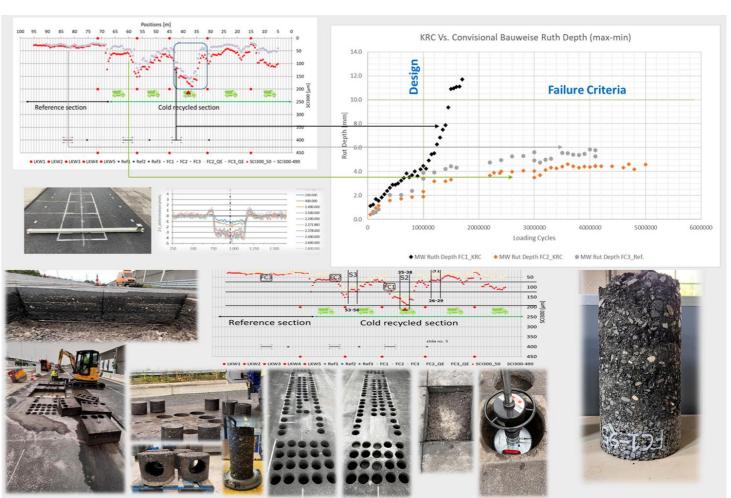
Proposed catalogue

Load class (million ESALS of 10t)			Bk 32 > 10 - 32		Bk 10 > 3.2 - 10		Bk 3.2 > 1.8 – 3.2		Bk 1.8 > 1.0 – 1.8		Bk 1.0 > 0.3 – 1.0		Bk 0.3 ≤ 0.3	
	RStO 12	BSM	RStO 12	BSM	RStO 12	BSM	RStO 12	BSM	RStO 12	BSM	RStO 12	BSM	RStO 12	BSM
Asphalt Surface (cm)	12	10	12	10	12	10	10	10	4	4	4	4	4	4
Asphalt Base (cm)	22	8	18	8	14	-	12	-	16	-	14	-	10	-
BSM (cm)	-	20	-	15	-	20		15	-	25	-	20	-	20
E _{v2} under BSM (MPa)) ≥ 120							≥ 10	00					
Anti-frost layer (cm)	ver subgrade > 45													
E _{v2} over subgrade (MPa)														

- ✓ For Bk3.2 to Bk100, Stellenbosch and for the lower 3 classes the Loudon
- Lower classes: 4 cm HMA wearing course
- Middle classes: + min. 6 cm HMA binder course
- Higher classes: + min. 8 cm HMA base course

Proposed catalogue


E _{v2} uK. BSM	Schichten	Bk							
(MPa)	(cm)	0,3	1,0	1,8	3,2	10	32	100	
	Asphaltdecke		4	4	10	10	10	10	
150	Asphalttragschicht		-	-	-	-	8	8	
	BSM		20	23	13	19	14	18	
	Asphaltdecke		4	4	10	10	10	10	
120	Asphalttragschicht		-	-	-	-	8	8	
	BSM		20	25	15	20	15	20	
	Asphaltdecke	4	4	4	10	10	10	10	
100	Asphalttragschicht	-	-	-	-	-	8	8	
	BSM	20	24	30	16	20	18	20	
	Asphaltdecke	4	4	4	10	10			
80	Asphalttragschicht	-	-	-	-	-			
	BSM	20	26	32	17	21			
	Asphaltdecke	4	4	4					
60	Asphalttragschicht	-	-	-					
	BSM	22	28	32					
	Asphaltdecke	4	4	4					
45	Asphalttragschicht	-	-	-					
	BSM	24	30	33					



Validation

Validation trough APT projects in duraBASt (BASt's outdoor facility)

- Construction 2019, In-Plant production
- 75% RAP + 25% Sand (0-2mm)
- 2.2% bitumen, 1% cement (1-425N)
- Loading 2020 -22, total of 10.9 Million (10 ton axle)

Kalantari, M. 2023. Cold recycling with foamed bitumen, gained knowledge from a test track in Germany, Roads and Bridges- Drogi I Mosty. 2023, 22(4), 463–480

Conclusion & Next steps

- An ME approach was used to produce a catalogue design for BSM in Germany.
- The lower loading classes (Bk 1.8), were validated with APT in BASt's outdoor facility.
- The proposed catalogue seems to be conservative but justification will be possible after more national projects and validations.
- The catalogue can be used as a fast orientation for other countries too.
- Other criteria as the fatigue of HMA, can be controlled on the basis of the existing ME method in Germany (RDO guideline).
- The thicknesses need to be checked from construction point of view to be then finalized.

Acknowledgment

- My colleagues in Loudon International:
 - A.H. Greyling
 - C. Whitehead
 - A.J. Robertson

Thank you for your attention!

I will be happy to answer your questions

Dr. Mehdi Kalantari Federal Highway and Transportation Research Institute (BASt) Section Analysis and Development of Pavement Structures Kalantari@bast.de